Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

EMG pattern recognition control (EMG-PR) is a promising option for control of upper limb prostheses with multiple degrees of freedom (DOF). The purposes of this study were to 1) evaluate outcomes of EMG-PR and inertial measurement units (IMU) control of the DEKA Arm as compared to personal prosthesis; and 2) compare outcomes of EMG-PR to IMU control of DEKA Arm.

Methods

This was a quasi-experimental, multi-site study with repeated measures that compared non-randomized groups using two types of controls: EMG-PR and IMUs. Subjects (N = 36) were transradial (TR) and transhumeral (TH) amputees. Outcomes were collected at Baseline (using personal prosthesis), and after in-laboratory training (Part A), and home use (Part B). Data was compared to personal prosthesis, stratified by amputation level and control type. Outcomes were also compared by control type.

Results

The EMG-PR group had greater prosthesis use after Part A, but worse dexterity, lower satisfaction, and slower activity performance compared to Baseline; the IMU group had slower activity performance. After Part B, the EMG-PR group had less perceived activity difficulty; the IMU group had improved activity performance, improved disability and activity difficulty, but slower performance. No differences were observed for TH group by control type in Part A or B. The TR group using EMG-PR had worse dexterity (Parts A & B), and activity performance (Part A) as compared to IMU users.

Discussion/Conclusion

Findings suggest that for the TR group that IMUs are a more effective control method for the DEKA Arm as compared to the EMG-PR prototypes employed in this study. Further research is needed to refine the EMG-PR systems for multi-DOF devices. Future studies should include a larger sample of TH amputees.

Trial registration

ClinicalTrials.gov NCT01551420.

Details

Title
EMG pattern recognition compared to foot control of the DEKA Arm
Author
Resnik, Linda J; ⨯ Frantzy Acluche; Borgia, Matthew; Cancio, Jill; Latlief, Gail; Phillips, Samuel; Sasson, Nicole
First page
e0204854
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2122518118
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.