It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Conventional chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC) however it increases therapeutic resistance. In contrast, metronomic chemotherapy (MET) is based on frequent drug administration at lower doses, resulting in inhibition of neovascularization and induction of tumor dormancy. This study aims to evaluate the inhibitory effects, adverse events, and potential mechanisms of MET Vinorelbine (NVB) combined with an angiogenesis inhibitor (Endostar).
Methods
Circulating endothelial progenitor cells (CEPs), apoptosis rate, expression of CD31, vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1α) were determined using flow cytometry, western blot analysis, immunofluorescence staining and Enzyme-linked immunosorbent assay (ELISA) analysis. And some animals were also observed using micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) to identify changes by comparing SUVmax values. In addition, white blood cell (WBC) counts and H&E-stained sections of liver, lungs, kidney, and heart were performed in order to monitor toxicity assessments.
Results
We found that treatment with MET NVB + Endo was most effective in inhibiting tumor growth, decreasing expression of CD31, VEGF, HIF-1α, and CEPs, and reducing side effects, inducing apoptosis, such as expression of Bcl-2, Bax and caspase-3. Administration with a maximum tolerated dose of NVB combined with Endostar (MTD NVB + Endo) demonstrated similar anti-tumor effects, including changes in glucose metabolism with micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) imaging, however angiogenesis was not inhibited. Compared with either agent alone, the combination of drugs resulted in better anti-tumor effects.
Conclusion
These results indicated that MET NVB combined with Endo significantly enhanced anti-tumor and anti-angiogenic responses without overt toxicity in a xenograft model of human lung cancer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer