It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
A novel prediction algorithm is needed for the identification of effective tumor associated mutated neoantigens. Only those with no homology to self wild type antigens are true predicted neoantigens (TPNAs) and can elicit an antitumor T cell response, not attenuated by central tolerance. To this aim, the mutational landscape was evaluated in HCV-associated hepatocellular carcinoma.
Methods
Liver tumor biopsies and adjacent non-tumor liver tissues were obtained from 9 HCV-chronically infected subjects and subjected to RNA-Seq analysis. Mutant peptides were derived from single nucleotide variations and TPNAs were predicted using two prediction servers (e.g. NetTepi and NetMHCstabpan) by comparison with corresponding wild-type sequences, non-related self and pathogen-related antigens. Immunological confirmation was obtained in preclinical as well as clinical setting.
Results
The development of such an improved algorithm resulted in a handful of TPNAs despite the large number of predicted neoantigens. Furthermore, TPNAs may share homology to pathogen’s antigens and be targeted by a pre-existing T cell immunity. Cross-reactivity between such antigens was confirmed in an experimental pre-clinical setting. Finally, TPNAs homologous to pathogen’s antigens were found in the only HCC long-term survival patient, suggesting a correlation between the pre-existing T cell immunity specific for these TPNAs and the favourable clinical outcome.
Conclusions
The new algorithm allowed the identification of the very few TPNAs in cancer cells, and those targeted by a pre-existing immunity strongly correlated with long-term survival. Only such TPNAs represent the optimal candidates for immunotherapy strategies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer