It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As a promising technology in the context of m-health and e-medical, wireless body area networks (WBANs) have a stringent requirement in terms of transmission reliability. Meanwhile, the wireless channel in WBANs is prone to deep fading due to multiple reasons, such as shadowing by the body, reflection, diffraction, and interference. To meet the challenge in transmission reliability, the dynamic slot scheduling (DSS) methods have attracted considerable interest in recent years. DSS method does not require extra hardware or software overhead on the sensor side. Instead, the hub optimizes the time-division multiple access slots by selecting the best permutation at the beginning of each superframe to improve the transmission reliability. However, most existing DSS works optimize the time slot scheduling based on a two-state (“good” or “bad”) Markov channel model, which is insufficient for human daily life scenarios with a variety of irregular activities. In this paper, we first collect the channel gain data in the real human daily scenarios and analyze the autocorrelation of wireless channels based on this real database. Motivated by the significant temporal autocorrelation, we then propose a new DSS method, which applies a temporal autocorrelation model to predict the channel condition for future time slots. The new method is designed to be compatible with IEEE 802.15.6 standard. Compared to the classical Markov model-based methods, simulation results show that the newly proposed DSS method achieves up to 12.9% reduction in terms of packet loss ratios.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, Australia; Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing, China
2 School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, Australia