Full text

Turn on search term navigation

© 2018 Bröker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Humans build models of their environments and act according to what they have learnt. In simple experimental environments, such model-based behaviour is often well accounted for as if subjects are ideal Bayesian observers. However, more complex probabilistic tasks require more sophisticated forms of inference that are sufficiently computationally and statistically taxing as to demand approximation. Here, we study properties of two approximation schemes in the context of a serial reaction time task in which stimuli were generated from a hierarchical Markov chain. One, pre-existing, scheme was a generically powerful variational method for hierarchical inference which has recently become popular as an account of psychological and neural data across a wide swathe of probabilistic tasks. A second, novel, scheme was more specifically tailored to the task at hand. We show that the latter model fit significantly better than the former. This suggests that our subjects were sensitive to many of the particular constraints of a complex behavioural task. Further, the tailored model provided a different perspective on the effects of cholinergic manipulations in the task. Neither model fit the behaviour on more complex contingencies that competently. These results illustrate the benefits and challenges that come with the general and special purpose modelling approaches and raise important questions of how they can advance our current understanding of learning mechanisms in the brain.

Details

Title
Forget-me-some: General versus special purpose models in a hierarchical probabilistic task
Author
Bröker, Franziska; ⨯ Louise Marshall; ⨯ Sven Bestmann; Dayan, Peter
First page
e0205974
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2124112594
Copyright
© 2018 Bröker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.