Full text

Turn on search term navigation

© 2016. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In hyperspectral images, once the pure spectra of the materials are known, hyperspectral unmixing seeks to find their relative abundances throughout the scene. We present a novel variational model for hyperspectral unmixing from incomplete noisy data, which combines a spatial regularity prior with the knowledge of the pure spectra. The material abundances are found by minimizing the resulting convex functional with a primal dual algorithm. This extends least squares unmixing to the case of incomplete data, by using total variation regularization and masking of unknown data. Numerical tests with artificial and real-world data demonstrate that our method successfully recovers the true mixture coefficients from heavily-corrupted data.

Details

Title
Hyperspectral Unmixing from Incomplete and Noisy Data
Author
Montag, Martin J; Stephani, Henrike
Publication year
2016
Publication date
Mar 2016
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2124664964
Copyright
© 2016. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.