Full Text

Turn on search term navigation

© 2018 Årthun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Predicting fish stock variations on interannual to decadal time scales is one of the major issues in fisheries science and management. Although the field of marine ecological predictions is still in its infancy, it is understood that a major source of multi-year predictability resides in the ocean. Here we show the first highly skilful long-term predictions of the commercially valuable Barents Sea cod stock. The 7-year predictions are based on the propagation of ocean temperature anomalies from the subpolar North Atlantic toward the Barents Sea, and the strong co-variability between these temperature anomalies and the cod stock. Retrospective predictions for the period 1957–2017 capture well multi-year to decadal variations in cod stock biomass, with cross-validated explained variance of over 60%. For lead times longer than one year the statistical long-term predictions show more skill than operational short-term predictions used in fisheries management and lagged persistence forecasts. Our results thus demonstrate the potential for ecosystem-based fisheries management, which could enable strategic planning on longer time scales. Future predictions show a gradual decline in the cod stock towards 2024.

Details

Title
Climate based multi-year predictions of the Barents Sea cod stock
Author
Årthun, Marius; ⨯ Bjarte Bogstad; Daewel, Ute; Keenlyside, Noel S; Anne Britt Sandø; Schrum, Corinna; Ottersen, Geir
First page
e0206319
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2124831318
Copyright
© 2018 Årthun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.