Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Synthetic ammonia produced from fossil fuels is essential for agriculture. However, the emissions-intensive nature of the Haber–Bosch process, as well as a depleting supply of these fossil fuels have motivated the production of ammonia using renewable sources of energy. Small-scale, distributed processes may better enable the use of renewables, but also result in a loss of economies of scale, so the high capital cost of the Haber–Bosch process may inhibit this paradigm shift. A process that operates at lower pressure and uses absorption rather than condensation to remove ammonia from unreacted nitrogen and hydrogen has been proposed as an alternative. In this work, a dynamic model of this absorbent-enhanced process is proposed and implemented in gPROMS ModelBuilder. This dynamic model is used to determine optimal designs of this process that minimize the 20-year net present cost at small scales of 100 kg/h to 10,000 kg/h when powered by wind energy. The capital cost of this process scales with a 0.77 capacity exponent, and at production scales below 6075 kg/h, it is less expensive than the conventional Haber–Bosch process.

Details

Title
Modeling and Optimal Design of Absorbent Enhanced Ammonia Synthesis
Author
Palys, Matthew J; McCormick, Alon; Cussler, E L; Daoutidis, Prodromos
Publication year
2018
Publication date
Jul 2018
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2125025600
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.