Introduction
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting more than 5% of the worldwide population.1 It is associated with a high risk of thromboembolic events, including stroke, which occurs in about 23% of AF patients, older than 80 years.2,3 Over the last decade, it accounted for about one third of hospital admissions for cardiac arrhythmias4,5 with an increasing prevalence in patients with cardiovascular problems, such as valvular heart disease, heart failure (HF), and coronary artery disease (CAD).6,7
The pharmacological management of AF targets either rate control (maintaining the heart rate at normal levels, using pharmacological agents, such as beta-blockers, non-dihydropyridine calcium-channel blocker, and cardiac glycosides) or rhythm control (restoration of sinus rhythm, using electrical cardioversion and/or antiarrhythmic agents, such as sodium channel blockers and potassium channel blockers) (8). In the past few years, several randomized controlled trials (RCTs) have investigated whether rhythm control is superior to rate control with respect to mortality and cerebrovascular accidents.9-22
Besides the controversial results of these trials, former meta-analyses showed conflicting results, suggesting that rate control is either similar or superior to rhythm control in terms of mortality and stroke rates.23,24 Moreover, recent trials have compared both strategies in different groups of AF patients, including younger and those with concomitant HF.9,12 Therefore, we conducted this systematic review and meta-analysis to update the evidence regarding the optimal control approach for AF.
Methods
This study was conducted following the guidelines of the Cochrane handbook of systematic reviews of interventions and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.25,26 All steps have been prespecified in a published protocol on PROSPERO register of systematic reviews (CRD42016049648).
Heeringa J, van der Kuip DAM, Hofman A, Kors JA, van Herpen G, Stricker BHC, et al., Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. European heart journal. 2006;27(8):949-53.
Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation: a major contributor to stroke in the elderly. The Framingham Study. Arch Intern Med. 1987;147(9):1561–4.
Copley DJ, Hill KM. Atrial Fibrillation: A Review of Treatments and Current Guidelines. AACN Adv Crit Care. 2016;27(1):120–8.
Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114(7):e257–354.
Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837–47.
Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM. Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol. 1994;74(3):236–41.
Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82(8a):2n–9n.
Wyse DG. Pharmacologic approaches to rhythm versus rate control in atrial fibrillation–where are we now? Int J Cardiol. 2006;110(3):301–12.
Carlsson J, Miketic S, Windeler J, Cuneo A, Haun S, Micus S, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation. Journal of the American College of Cardiology. 2003;41(10):1690.
Gillinov AM, Bagiella E, Moskowitz AJ, Raiten JM, Groh MA, Bowdish ME, et al. Rate control versus rhythm control for atrial fibrillation after cardiac surgery. New England Journal of Medicine. 2016;374(20):1911–21.
Opolski G, Torbicki A, Kosior DA, Szulc M, WozĚ B, KoĹ P, et al. Rate control vs rhythm control in patients with nonvalvular persistent atrial fibrillation: the results of the Polish How to Treat Chronic Atrial Fibrillation (HOT CAFE) Study. CHEST Journal. 2004;126(2):476–86.
Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, et al., Rhythm control versus rate control for atrial fibrillation and heart failure. New England Journal of Medicine. 2008;358(25):2667–77.
Ogawa S, Yamashita T, Yamazaki T, Aizawa Y, Atarashi H, Inoue H, et al., Optimal treatment strategy for patients with paroxysmal atrial fibrillation. Circulation Journal. 2009;73(2):242–8.
Ökçün B, Yigit Z, Arat A, Küçükoglu MS. Comparison of rate and rhythm control in patients with atrial fibrillation and nonischemic heart failure. Japanese heart journal. 2004;45(4):591–601.
Rienstra M, Van Veldhuisen DJ, Crijns HJGM, Van Gelder IC. Enhanced cardiovascular morbidity and mortality during rhythm control treatment in persistent atrial fibrillation in hypertensives: data of the RACE study. European heart journal. 2007;
Shelton RJ, Clark AL, Goode K, Rigby AS, Houghton T, Kaye GC, et al., A randomised, controlled study of rate versus rhythm control in patients with chronic atrial fibrillation and heart failure:(CAFE-II Study). Heart. 2009;95(11):924–30.
Vora A, Karnad D, Goyal V, Naik A, Gupta A, Lokhandwala Y, et al., Control of rate versus rhythm in rheumatic atrial fibrillation: a randomized study. Indian heart journal. 2004;56(2):110–6.
Yildiz A, Yigit Z, Okcun B, Baskurt M, Ortak K, Kaya A, et al., Comparison of rate and rhythm control in hypertension patients with atrial fibrillation. Circulation Journal. 2008;72(5):705–8.
Hohnloser SH, Kuck K-H, Lilienthal J, Investigators P. Rhythm or rate control in atrial fibrillation—Pharmacological Intervention in Atrial Fibrillation (PIAF): a randomised trial. The Lancet. 2000;356(9244):1789–94.
Investigators AFFI of RM. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;2002(347):1825–33.
Steinberg JS, Sadaniantz A, Kron J, Krahn A, Denny DM, Daubert J, et al., Analysis of cause-specific mortality in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Circulation. 2004;109(16):1973–80.
Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T, et al., A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. New England Journal of Medicine. 2002;347(23):1834–40.
Chatterjee S, Sardar P, Lichstein E, Mukherjee D, Aikat S. Pharmacologic Rate versus Rhythm‐Control Strategies in Atrial Fibrillation: An Updated Comprehensive Review and Meta‐Analysis. Pacing and Clinical Electrophysiology. 2013;36(1):122–33.
De Denus S, Sanoski CA, Carlsson J, Opolski G, Spinler SA. Rate vs rhythm control in patients with atrial fibrillation: a meta-analysis. Archives of Internal Medicine. 2005;165(3):258–62.
Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of interventions. The Cochrane Collaboration. 2008.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical research ed.). British Medical Journal Publishing Group. 2009;339(17):b2535.
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed.). 1997;315(7109):629–34.
Julian DG, Camm AJ, Frangin G, Janse MJ, Munoz A, Schwartz PJ, et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. The Lancet. 1997;349(9053):667–74.
Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. New England Journal of Medicine. 2005;352(3):225–37.
Cordina J, Mead GE. Pharmacological cardioversion for atrial fibrillation and flutter. The Cochrane Library. 2005;
Hagens VE, Vermeulen KM, TenVergert EM, Van Veldhuisen DJ, Bosker HA, Kamp O, et al. Rate control is more cost-effective than rhythm control for patients with persistent atrial fibrillation—results from the RAte Control versus Electrical cardioversion (RACE) study. European heart journal. 2004;25(17):1542–9.
Marshall DA, Levy AR, Vidaillet H, Fenwick E, Slee A, Blackhouse G, et al. Cost-effectiveness of rhythm versus rate control in atrial fibrillation. Annals of Internal Medicine. 2004;141(9):653–61.
Pietrasik A, Kosior DA, Niewada M, Opolski G, Latek M, Kamiñski B. The cost comparison of rhythm and rate control strategies in persistent atrial fibrillation. International journal of cardiology. 2007;118(1):21–7.
Camm AJ, Breithardt G, Crijns H, Dorian P, Kowey P, Le Heuzey J-Y, et al. Real-life observations of clinical outcomes with rhythm-and rate-control therapies for atrial fibrillation: RECORDAF (Registry on Cardiac Rhythm Disorders Assessing the Control of Atrial Fibrillation). Journal of the American College of Cardiology. 2011;58(5):493–501.
Echahidi N, Pibarot P, O’Hara G, Mathieu P. Mechanisms, prevention, and treatment of atrial fibrillation after cardiac surgery. Journal of the American College of Cardiology. 2008;51(8):793–801.
Nair SG. Atrial fibrillation after cardiac surgery. Annals of cardiac anaesthesia. 2010;13(3):196.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2018. This work is licensed under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Atrial fibrillation (AF) is a common, sustained tachyarrhythmia, associated with an increased risk of mortality and thromboembolic events. We performed this meta-analysis to compare the clinical efficacy of rate and rhythm control strategies in patients with AF in a meta-analysis framework. A comprehensive search of PubMed, OVID, Cochrane-CENTRAL, EMBASE, Scopus, and Web of Science was conducted, using relevant keywords. Dichotomous data on mortality and other clinical events were extracted and pooled as risk ratios (RRs), with their 95% confidence-interval (CI), using RevMan software (version 5.3). Twelve studies (8451 patients) were pooled in the final analysis. The overall effect-estimate did not favor rate or rhythm control strategies in terms of all-cause mortality (RR= 1.13, 95% CI [0.88, 1.45]), stroke (RR= 0.97, 95% CI [0.79, 1.20]), thromboembolism (RR= 1.06, 95% CI [0.64, 1.76]), and major bleeding (RR= 1.10, 95% CI [0.90, 1.35]) rates. These findings were consistent in AF patients with concomitant heart failure (HF). The rate of rehospitalization was significantly higher (RR= 0.72, 95% CI [0.57, 0.92]) in the rhythm control group, compared to the rate control group. In younger patients ( <65 years), rhythm control was superior to rate control in terms of lowering the risk of all-cause mortality (p="0.0003)," hf (p="0.003)" and major bleeding (p="0.02)." in older af patients and those with concomitant hf, both rate and rhythm control strategies have similar rates of mortality and major clinical outcomes; therefore, choosing an appropriate strategy should consider individual variations, such as patient preferences, comorbidities, and treatment cost.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer