It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We report the rational construction of a de novo-designed biliverdin-binding protein by first principles of protein design, informed by energy minimization modeling in Rosetta. The self-assembling tetrahelical bundles bind biliverdin IXa (BV) cofactor auto-catalytically in vitro, similar to photosensory proteins that bind BV (and related bilins, or linear tetrapyrroles) despite lacking sequence and structural homology to the natural counterparts. Upon identifying a suitable site for cofactor ligation to the protein scaffold, stepwise placement of residues stabilized BV within the hydrophobic core. Rosetta modeling was used in the absence of a high-resolution structure to define the structure-function of the binding pocket. Holoprotein formation indeed stabilized BV, resulting in increased far-red BV fluorescence. By removing segments extraneous to cofactor stabilization or bundle stability, the initial 15-kilodalton de novo-designed fluorescence-activating protein ("dFP") was truncated without altering its optical properties, down to a miniature 10-kilodalton "mini," in which the protein scaffold extends only a half-heptad repeat beyond the hypothetical position of the bilin D-ring. This work demonstrates how highly compact holoprotein fluorochromes can be rationally constructed using de novo protein design technology and natural cofactors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer