Abstract

We report the rational construction of a de novo-designed biliverdin-binding protein by first principles of protein design, informed by energy minimization modeling in Rosetta. The self-assembling tetrahelical bundles bind biliverdin IXa (BV) cofactor auto-catalytically in vitro, similar to photosensory proteins that bind BV (and related bilins, or linear tetrapyrroles) despite lacking sequence and structural homology to the natural counterparts. Upon identifying a suitable site for cofactor ligation to the protein scaffold, stepwise placement of residues stabilized BV within the hydrophobic core. Rosetta modeling was used in the absence of a high-resolution structure to define the structure-function of the binding pocket. Holoprotein formation indeed stabilized BV, resulting in increased far-red BV fluorescence. By removing segments extraneous to cofactor stabilization or bundle stability, the initial 15-kilodalton de novo-designed fluorescence-activating protein ("dFP") was truncated without altering its optical properties, down to a miniature 10-kilodalton "mini," in which the protein scaffold extends only a half-heptad repeat beyond the hypothetical position of the bilin D-ring. This work demonstrates how highly compact holoprotein fluorochromes can be rationally constructed using de novo protein design technology and natural cofactors.

Details

Title
Rational construction of compact de novo-designed biliverdin-binding proteins
Author
Sheehan, Molly M; Magaraci, Michael; Kuznetsov, Ivan A; Mancini, Joshua A; Kodali, Goutham; Moser, Christopher C; Dutton, P Leslie; Chow, Brian
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2018
Publication date
Oct 26, 2018
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2125495503
Copyright
�� 2018. This article is published under http://creativecommons.org/licenses/by-nd/4.0/ (���the License���). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.