Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The phase transformation behavior of Ti-42Al-5Mn (at.%) alloy from different phase regions with various cooling rates was investigated based on electron probe micro analyzer-backscattered electrons (EPMA-BSE). It is shown that β→α2′ takes place when this alloy is cooled at a high rate, such as water quenching (WQ), oil cooling (OC), from β single phase. With the decreasing cooling rate to air cooling (AC), β→α2′ is restrained and β→γ is promoted by forming γ platelets. The room-temperature microstructure is βo + α2 when alloy cooled (WQ and OC) from (β + α) dual-phase. However, under AC, β→γ occurs and γ platelets form. It should be noted that α2→γ happens when this alloy cooled from 1180 °C (>Teut) by OC and AC, forming an incomplete lamellae (α2/γ) structure in the α2 phase. However, when the alloy cooled from 1100 °C (<Teut), α2/γ→βo,sec occurs and complete lamellae generates in α2 phase.

Details

Title
Phase Transformation Behavior of a β-Solidifying γ-TiAl-Based Alloy from Different Phase Regions with Various Cooling Methods
Author
Li, Xiaobing; Xu, Hao; Xing, Weiwei; Chen, Bo; Ma, Yingche; Liu, Kui
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2125578251
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.