Full text

Turn on search term navigation

© 2018 Panday et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Digital soil mapping has been widely used to develop statistical models of the relationships between environmental variables and soil attributes. This study aimed at determining and mapping the spatial distribution of the variability in soil chemical properties of the agricultural floodplain lands of the Bara district in Nepal. The study was carried out in 23 Village Development Committees with 12,516 ha total area, in the southern part of the Bara district. A total of 109 surface soil samples (0 to 15 cm depth) were collected and analyzed for pH, organic matter (OM), nitrogen (N), phosphorus (P, expressed as P2O5), potassium (K, expressed as K2O), zinc (Zn), and boron (B) status. Descriptive statistics showed that most of the measured soil chemical variables (other than pH and P2O5) were skewed and non-normally distributed and logarithmic transformation was then applied. A geostatistical tool, kriging, was used in ArcGIS to interpolate measured values for those variables and several digital map layers were developed based on each soil chemical property. Geostatistical interpolation identified a moderate spatial variability for pH, OM, N, P2O5, and a weak spatial variability for K2O, Zn, and B, depending upon the use of amendments, fertilizing methods, and tillage, along with the inherent characteristics of each variable. Exponential (pH, OM, N, and Zn), Spherical (K2O and B), and Gaussian (P2O5) models were fitted to the semivariograms of the soil variables. These maps allow farmers to assess existing farm soils, thus allowing them to make easier and more efficient management decisions and maintain the sustainability of productivity.

Details

Title
Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS
Author
Panday, Dinesh; ⨯ Bijesh Maharjan; Chalise, Devraj; Shrestha, Ram Kumar; Twanabasu, Bikesh
First page
e0206350
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2125646584
Copyright
© 2018 Panday et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.