Full Text

Turn on search term navigation

Copyright © 2018 Octavio Camarena et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

The Locust Search (LS) algorithm is a swarm-based optimization method inspired in the natural behavior of the desert locust. LS considers the inclusion of two distinctive nature-inspired search mechanism, namely, their solitary phase and social phase operators. These interesting search schemes allow LS to overcome some of the difficulties that commonly affect other similar methods, such as premature convergence and the lack of diversity on solutions. Recently, computer vision experiments in insect tracking methods have conducted to the development of more accurate locust motion models than those produced by simple behavior observations. The most distinctive characteristic of such new models is the use of probabilities to emulate the locust decision process. In this paper, a modification to the original LS algorithm, referred to as LS-II, is proposed to better handle global optimization problems. In LS-II, the locust motion model of the original algorithm is modified incorporating the main characteristics of the new biological formulations. As a result, LS-II improves its original capacities of exploration and exploitation of the search space. In order to test its performance, the proposed LS-II method is compared against several the state-of-the-art evolutionary methods considering a set of benchmark functions and engineering problems. Experimental results demonstrate the superior performance of the proposed approach in terms of solution quality and robustness.

Details

Title
Ls-II: An Improved Locust Search Algorithm for Solving Optimization Problems
Author
Camarena, Octavio 1 ; Cuevas, Erik 1   VIAFID ORCID Logo  ; Pérez-Cisneros, Marco 1   VIAFID ORCID Logo  ; Fernando, Fausto 1 ; González, Adrián 1 ; Valdivia, Arturo 1 

 Departamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, Mexico 
Editor
Eduardo Rodriguez-Tello
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126540345
Copyright
Copyright © 2018 Octavio Camarena et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/