1. Introduction
Formation fracture pressure refers to the pressure which causes formation fracture or original fracture to be reopened under the action of mud string pressure in the open hole well. It is widely used in drilling well structure, well control design and operation, fracturing, and increasing production in oilfield production process. In order to meet the society's demand for oil and gas resources, unconventional oil and gas resources have been explored and developed. The geological structure is becoming complex, which is affected by the chemical field [1–3], temperature field [4, 5], seepage field [6], and tectonic stress [7]. How to obtain accurate formation fracture pressure and guide production become more critical and difficult [8].
Scholars have put forward many models to predict the formation fracture pressure. Anderson [9] used the well logs to calculate fracture pressure. Li [10] proposed a fracture pressure model by the double effective stress theory [11], which combines the advantages of both H-F fracture pressure formula [12] and the H-W fracture pressure formula [13]; the double effective stress theory has been widely applied in many fields such as oil, rock, coal, and foundation engineering [14–16]. Compared with Li’s model, Huang [7] considered the relationship between overlying stress and depth, tectonic stress and rock strength. However, both Li’s model and Huang’s model did not consider the influence of chemical and temperature fields. Yan [17] built a simple model for calculating the fracture pressure considering hydration stress, which improved the prediction accuracy. Li [4] established the mathematical model of additional thermal stress produced by temperature change on the shaft lining and proposed the calculation method of additional fracture pressure caused by temperature change. Deng [18] established a fracture pressure calculation model for high temperature and high pressure formation, which took into account the variation of wellbore temperature and wellbore permeability, but it did not consider the influence of chemical field and it is only fit for sandstone.
In this paper, a comprehensive model to calculate the rock fracture pressure by the theory of double effective stress of porous medium is established, which fully considers the deformation mechanism and material structure of the porous medium. Besides, this model proposed in this paper takes into account important effective factors such as the ground stress field, the inner pressure of the wellbore, chemical field, temperature field, tectonic stress field, porosity of rocks, seepage of the penetrating fluid, and the double effective stress. This new model is applicable to predict the fracture pressure of different types of rocks by changing the parameters of rocks in the model.
2. Deduction of the Rock Fracture Pressure Model
2.1. Effective Stress of Rock
Rock is composed of a large number of solid particles and intergranular pores. Usually the pores of rock are saturated with fluid, so the rock is affected by both external and internal pressures. It makes the stress state of rock more complicated, so many theories of solid mechanics cannot be directly applied to the study of rock mechanics; the stress state of rock could be simplified to obtain the effective stress of rock. There are two effective stresses in the rock [19]: the body effective stress and the structure effective stress.
2.1.1. The Body Effective Stress
Rocks are affected by the external stress
From Figure 1, the external stress of the rock above the arbitrary surface
Equation (1) can be simplified to
2.1.2. The Structure Effective Stress
The contact stress
From Figure 2, the skeleton stress below the surface
When the surface
Equation (4) can be simplified to
By (5), we can obtain the contact stress. When we convert it to the cross section area of the whole rock, the structure effective stress that determines the structural deformation of rock is obtained.
2.2. Wellbore Stress Field Model
Vertical wellbore can be regarded as a circular hole on the infinite plane (see Figure 3). It is subjected to horizontal stress in two directions
2.3. The Circumferential Stress Generated by Ground Stress on the Wall of a Well
Due to the existence of the wellbore, the ground stress and its distribution in the stratum will change. The circumferential stress at any point in the stratum is given by the elastic mechanics.
2.4. The Circumferential Stress Generated by the Inner Pressure of the Wellbore
During the fracturing process, high pressure fluids are injected into the wellbore, so the pressure in the wellbore increases rapidly. The circumferential stress is produced on the shaft lining. If we regard the formation around the wellbore as an infinite wall cylinder, the circumferential stress generated by wellbore pressure is obtained by elasticity.
2.5. The Circumferential Stress Generated by the Penetrating Fluid and the Body Effective Stress
The radial flow of drilling fluid in the formation will generate additional circumferential stresses around the wellbore [21]. As the body effective stress is shown in (3), the increment and distribution of the in situ stress caused by the increment of pore pressure are [10]
2.6. The Circumferential Stress Generated by Chemical Field
Drilling fluid enters the wellbore through the action of hydraulic pressure difference and permeability potential difference. The rock around the wellbore is prone to hydration when it encounters water; hydration can reduce the rock strength and cause instability of the wellbore [6, 22, 23]. Chenevert [24] regarded the shaft lining as a semipermeable membrane; he used hydrostatic pressure to represent hydration stress. The formula is as follows:
2.7. The Circumferential Stress Generated by Temperature Field
Maury [5] and Boas [25] thought that the temperature change of shaft wall could cause instability of shaft lining. When the drilling fluid circulates, the upper wellbore surrounding rock is heated. When the circulation stops, the lower wellbore surrounding rock is heated again, so the wellbore surrounding rock is heated and expanded. However, it is restricted by the wellbore fluid column pressure and the wellbore surrounding rock cannot expand freely. Thus, the temperature stress will occur in the wellbore surrounding rock, which changes the circumferential stress of the surrounding rock of the shaft lining; the circumferential stress caused by the temperature stress is as follows [25, 26]:
2.8. Total Circumferential Stress on the Wall of a Wellbore
Because the formation rock is assumed to be an isotropic linear elastic porous medium, the stress state of the wall rock can be obtained by using the principle of linear superposition. The minimum circumferential stress on the shaft lining
2.9. The Minimum Structure Circumferential Stress
By (6) and
2.10. Influence of Tectonic Stress and Overlying Stress on Facture Pressure
When the effective circumferential stress of the borehole wall rock
When the upper form is satisfied,
According to Hafner [27], in gentle or infinite horizontal strata, horizontal ground stresses are shown in the following expressions:
Submitting (22) into (20),
3. Example Calculation of Rock Fracture Pressure Model
3.1. The Relationship between Tensile Strength and Water Contents
Qu et al. [6] carried out three axial compression tests of rock samples at different soaking time (see Table 1). According to previous tests, the tensile strength of rock is about 1/8~1/15 of compressive strength by Guo et al. [28]. According to the above conclusion, the tensile strength can be obtained by calculation (see Table 1).
Table 1
Results of three axial compression tests of rock cores with different water contents [6].
Confining pressure | Soaking | Water content | Compressive strength | Poisson | Tensile strength |
---|---|---|---|---|---|
time/ |
|
|
ratio |
|
|
15MPa | 0 | 0 | 92.63 | 0.2 | 6.18 |
0.5 | 0.38 | 84.21 | 0.18 | 5.61 | |
1 | 0.53 | 81.675 | 0.25 | 5.45 | |
2 | 0.63 | 75.35 | 0.2 | 5.02 | |
3 | 0.68 | 74.915 | 0.27 | 4.99 | |
4 | 0.69 | 71.65 | 0.2 | 4.78 | |
5 | 0.7 | 70.38 | 0.31 | 4.69 | |
|
|||||
20MPa | 0 | 0 | 99.83 | 0.3 | 6.66 |
0.5 | 0.42 | 92.58 | 0.2 | 6.17 | |
1 | 0.65 | 89.23 | 0.26 | 5.95 | |
2 | 0.71 | 84.67 | 0.22 | 5.64 | |
3 | 0.73 | 83.355 | 0.31 | 5.56 | |
4 | 0.76 | 80.69 | 0.21 | 5.38 | |
5 | 0.81 | 77.435 | 0.21 | 5.16 | |
|
|||||
25MPa | 0 | 0 | 105.22 | 0.21 | 7.01 |
0.5 | 0.43 | 102.52 | 0.2 | 6.83 | |
1 | 0.57 | 94.565 | 0.23 | 6.30 | |
2 | 0.65 | 91.1 | 0.19 | 6.07 | |
3 | 0.74 | 89.365 | 0.24 | 5.96 | |
4 | 0.82 | 87.91 | 0.18 | 5.86 | |
5 | 0.86 | 87.54 | 0.25 | 5.84 |
The relationship between tensile strength and water contents is fitted as shown in Figure 4.
[figure omitted; refer to PDF]It can be seen from Figure 4 that the tensile strength decreases with the increase of water contents under different confining pressures. When there is high content of minerals in clays and micro cracks, the hydration will occur while the drilling fluid contacts them; in the meantime, the hydrated pores increase. Finally, the internal structure becomes looser, the micro cracks expand, and the mechanical properties of rock will be reduced.
3.2. Example of Formation Fracture Pressure Calculation
By the performance parameters of strata, measured in situ stresses, and fracture pressure values in Dagang Oilfield [7, 18, 19, 25], the basic parameters of rock are selected as shown in Table 2. By (23), the calculated results of formation fracture pressure are shown in Table 3 and Figure 5.
Table 2
Conventional parameters of rock formation.
Membrane permeable | Gas constant | Absolute | Partial molar volume of | The liquid activity of water entering |
Efficiency |
|
Temperature |
pure water |
the formation |
0.1 | 8.314 | 363 |
|
0.78 |
|
||||
the activity of water in | Rock porosity | Poisson ratio | Structural stress coefficient | Structural stress coefficient |
formation |
|
|
|
|
0.915 | 0.18 | 0.22 | 0.91 | 0.31 |
Table 3
Crustal stress and fracture pressure in oil formation in Dagang Oilfield.
Well No. | Average depth of well /m | Stratum pressure |
Tensile strength |
Effective overlying stress |
Minimum horizontal effective ground stress |
Maximum horizontal effective crustal stress |
Predicted rupture pressure /MPa | |||
---|---|---|---|---|---|---|---|---|---|---|
Measured fracture pressure | Li’s model | Huang’s model | The present study | |||||||
X814 | 1293 | 11.17 | 7.84 | 15.48 | 12.74 | 24.99 | 32.24 | 14.32 | 28.05 | 29.58 |
G662 | 1375 | 12.35 | 2.94 | 16.27 | 10.00 | 19.11 | 26.16 | 8.92 | 24.79 | 27.95 |
G772 | 1381 | 12.15 | 2.94 | 16.56 | 11.17 | 21.36 | 27.24 | 9.86 | 24.76 | 27.81 |
Y811 | 1393 | 12.25 | 3.92 | 16.66 | 13.13 | 24.30 | 31.26 | 12.71 | 26.45 | 29.06 |
B842 | 2792 | 24.60 | 2.94 | 35.86 | 22.34 | 44.68 | 49.88 | 16.12 | 48.48 | 53.02 |
B888 | 3349 | 29.59 | 3.92 | 43.61 | 26.75 | 53.50 | 60.26 | 19.59 | 58.98 | 63.85 |
B46 | 3958 | 34.88 | 3.92 | 53.11 | 33.32 | 61.73 | 77.02 | 27.45 | 69.83 | 75.12 |
H114 | 2142 | 18.42 | 3.92 | 27.14 | 18.23 | 34.98 | 41.55 | 15.49 | 38.20 | 41.59 |
H115 | 2156 | 19.01 | 4.90 | 26.85 | 17.83 | 34.69 | 42.72 | 15.51 | 39.59 | 42.98 |
From Figure 5, we can see that the formation fracture pressure increases with the increase of well depth. The fracture pressure calculated by the model in this paper is closest to the measured fracture pressure. By calculation, the error of the fracture pressure calculation model in this paper is 4.39%, while the prediction error of Li’s model is 36.48% and 8.04% for Huang’s model.
In this paper, a comprehensive model to calculate the rock fracture pressure by the theory of double effective stress of porous medium is established, which fully considers the deformation mechanism and material structure of the porous medium. It takes into account the stress field of wall rock, overlying stress, structural stress of inhomogeneous formation, additional stress caused by drilling fluid seepage, hydration stress, and temperature change stress caused by wellbore temperature difference and improves the calculation accuracy of fracture pressure. Therefore, it is more practical to calculate the equivalent drilling fluid density by this model.
Meanwhile, it can be seen from Figure 5 that the predicted values of fracture pressure are very close to the measured values in the well below 2900 meters, while it is slightly higher than the measured value in the section above 2900 meters. The reason is that the temperature change at the initial stage of cyclic injection drilling has a significant effect on the change of fracture pressure. After a certain period of cyclic time, the wall temperature is basically in the balance state and no longer affects the fracture pressure. The present study takes into account the effect of temperature variation in the whole well segment, so the predicted value of this well segment is a little higher.
Furthermore, the parameters of shale such as the elastic modulus are greatly influenced by temperature changes; the elastic moduli of rock above and below 2900 meters are different. In order to facilitate the calculation, the same value is adopted in the present study, which led to the deviation of the predicted value in the strata over 2900 meters.
3.3. The Effect of Water Content on Fracture Pressure
Combining the fitting formula of tensile strength and water contents in Figure 4 with (23), the relation diagram of rock fracture pressure and water contents is obtained (see Figure 6).
[figure omitted; refer to PDF]From Figure 6, we can see that the fracture pressure decreases with the increase of water contents. This is because water can soften the rock and change the mechanical properties of rock by hydration. Specifically, when the drilling fluid meets the clay minerals and micro cracks, the hydration effect will make the pore increase and loosen the internal structure of the rock, result in the propagation of the micro crack, and finally decrease the mechanical properties of rock. With the increase of water contents, the compressive strength and tensile strength of rock reduce and then it leads to the decrease of fracture pressure.
4. Conclusions
(1) Based on the theory of double effective stress of porous medium, elastoplastic mechanics, rock mechanics, and the maximum tensile stress criterion, a comprehensive model to calculate the rock fracture pressure suited for different types of rocks is established in this paper.
(2) The fracture pressure model proposed in this paper takes into account the important effective factors: the crustal stress, the hydration stress, the temperature stress, the tectonic stress, the contact porosity of rock skeleton, the porosity of formation, and additional stress generated by seepage of drilling fluid. The calculation accuracy is improved for the prediction error which is 4.39%, which shows better agreement with the measured fracture pressure than other models.
(3) The effects of water contents on the tensile strength and fracture pressure are analyzed. Results show that both the tensile strength and fracture pressure decrease with the increase of water contents, which is due to the reduction of the mechanical properties of rocks by hydration.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
The present work is supported by the National Science Foundation of China under Grants Nos. 51674200, 51704233, and 51704237. Thanks are due to my daughter Xu Enyu especially.
[1] T. Bu, P. Dai, "A simplified method of fluid-solid coupling simulation to stress-sensitive reservoir," Journal of Southwest Petroleum University, vol. 29 no. 4, pp. 145-147, 2008.
[2] X. J. Liu, P. Y. Luo, "Study on the stability of well in mudstone strata," Natural Gas Industry, vol. 17 no. 1, pp. 45-48, 1997.
[3] P. Wang, Z. Qu, H. Huang, "Creep Experimental Study of Brittle Shale Triaxial State under Aqueous," Science Technology & Engineering, vol. 16, pp. 66-71, 2016.
[4] S. G. Li, J. G. Deng, B. H. Yu, "Formation fracture pressure calculation in high temperatures wells," Chinese Journal of Rock Mechanics & Engineering, vol. 24 no. 2, pp. 5669-5673, 2005.
[5] V. Maury, A. Guenot, "Practical advantages of mud cooling systems for drilling," SPE Drilling & Completion, vol. 10 no. 1, pp. 42-48, DOI: 10.2118/25732-PA, 1995.
[6] Z. Qu, P. Wang, Creep damage Instability Study of shale, 2016.
[7] R. Huang, "A model for predicting formation fracture pressure," Journal of the University of Petroleum China, vol. no. 4, pp. 16-28, 1984.
[8] W. Zhang, S. Deng, H. Fan, "3D Calculation and Display for Formation Fracture Pressure," Science Technology & Engineering, vol. 2 no. 1, pp. SB57-SB68, 2014.
[9] R. A. Anderson, D. S. Ingram, A. M. Zanier, "Determining fracture pressure gradients from well logs," Journal of Petroleum Technology, vol. 25, pp. 1259-1268, DOI: 10.2118/4135-PA, 1973.
[10] C. L. Li, X. Kong, "A theoretical study on rock breakdown pressure calculation equations of fracturing process," Oil Drilling & Production Technology, vol. 22 no. 2, pp. 54-56, 2000.
[11] C. L. Li, X. Y. Kong, Z. X. Xu, "Double Effective Stresses of Porous Media," Nature Magazine, vol. 24 no. 12, pp. 1515-1518, 1999.
[12] B. Haimson, C. Fairhurst, "Initiation and extension of hydraulic fractures in rocks," SPE Journal, vol. 7 no. 03, pp. 310-318, DOI: 10.2118/1710-PA, 2013.
[13] E. Detournay, R. Carbonell, "Fracture-mechanics analysis of the breakdown process in minifracture or leakoff test," SPE Production and Facilities, vol. 12 no. 3, pp. 195-199, DOI: 10.2118/28076-PA, 1997.
[14] C. Jiao, S. He, Q. Xie, D. Gu, H. Zhu, L. Sun, H. Liu, "An experimental study on stress-dependent sensitivity of ultra-low permeability sandstone reservoirs," Shiyou Xuebao/Acta Petrolei Sinica, vol. 32 no. 3, pp. 489-494, 2011.
[15] P. Lu, Z. W. Sheng, G. W. Zhu, "The Effective Stress and Mechanical Deformation and Damage Characteristics of Gas-filled Coal," Journal of University of Science & Technology of China, vol. 31 no. 6, pp. 686-693, 2001.
[16] X.-L. Jiang, P.-C. Li, "Calculation of intergranular suction considering cementing area between soil particles," Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, vol. 38 no. 6, pp. 1160-1164, 2016.
[17] X. Y. Yan, Y. Q. Hu, N. Li, "Calculation model of breakdown pressure in shale formation," Lithologic Hydrocarbon Reservoir, vol. 27 no. 2, pp. 109-113, 2015.
[18] J. Deng, "Formation Fracture Pressure Prediction Method," Petroleum Drilling Techniques, vol. 37 no. 5, pp. 43-46, 2009.
[19] H. Rouse, "Elementary Mechanics of Fluids," .
[20] X. J. Zhao, Q. Zhan, H. Fan, H. B. Zhao, F. J. An, "Cracking mechanism of shale cracks during fracturing," IOP Conference Series: Materials Science and Engineering, vol. 372,DOI: 10.1088/1757-899X/372/1/012046, 2018.
[21] T. Liu, P. Cao, H. Lin, "Evolution Procedure of Multiple Rock Cracks under Seepage Pressure," Mathematical Problems in Engineering, vol. 2013,DOI: 10.1155/2013/738013, 2013.
[22] P. Suraneni, R. J. Flatt, "Micro‐reactors to study alite hydration," Journal of the American Ceramic Society, vol. 98 no. 5, pp. 1634-1641, 2015.
[23] J. Gui, T. Ma, P. Chen, H. Yuan, Z. Guo, "Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling," Energies, vol. 11 no. 4,DOI: 10.3390/en11040926, 2018.
[24] M. E. Chenevert, V. Pernot, "Control of Shale Swelling Pressures Using Inhibitive Water-Base Muds," Proceedings of the SPE Annual Technical Conference and Exhibition,DOI: 10.2118/49263-MS, .
[25] M. B. Boas, "Temperature Profile of a Fluid Flowing within a Well," Proceedings of the SPE Latin America Petroleum Engineering Conference, pp. 439-446, DOI: 10.2118/21133-MS, .
[26] V. Hooker, W. Duvall, "In situ rock temperature-stress investigations in rock quarries," Ntis Pb, 1971.
[27] W. Hafner, "Stress distributions and faulting," Geological Society of America Bulletin, vol. 62 no. 4, pp. 373-398, DOI: 10.1130/0016-7606(1951)62[373:SDAF]2.0.CO;2, 1951.
[28] J.-C. Guo, Z.-H. Zhao, S.-G. He, H. Liang, Y.-X. Liu, "A new method for shale brittleness evaluation," Environmental Earth Sciences, vol. 73 no. 10, pp. 5855-5865, DOI: 10.1007/s12665-015-4268-z, 2015.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2018 Zhao Xiaojiao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
In this paper, a comprehensive model to calculate the rock fracture pressure by the theory of double effective stress of porous medium is established, which considers such effective factors as the crustal stress field, hydration stress field, temperature field, tectonic stress field, the porosity of rock, and additional stress field generated by seepage of drilling fluid. This new model is applicable to predict the fracture pressure of different types of rocks. Using the experimental parameters of field fracturing and the experimental results of three-axis compression of rock cores with different water contents, we may get the calculated fracture pressure. Compared with the measured fracture pressure in the oilfield, the result calculated in the present study shows good agreement. Besides, the effects of water contents on the tensile strength and fracture pressure are analyzed. Results show that both the tensile strength and fracture pressure decrease with the increase of water contents, which is due to the reduction of the mechanical properties of rocks by hydration.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shanxi, 710072, China; School of Electronic Engineering, Xi’an Shiyou University, Xi’an, Shanxi, 710065, China; Key Laboratory of Well Stability and Fluid and Rock Mechanics in Oil and Gas Reservoir of Shanxi Province, Xi’an, Shanxi, 710065, China
2 Standardization and Information Center, CNPC Tubular Goods Research Institute, 710077 Xi’an, China
3 China University of Geosciences, Wuhan, Hubei, 100083, China
4 School of Electronic Engineering, Xi’an Shiyou University, Xi’an, Shanxi, 710065, China