Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effect of plasticizer species and the degree of hydrolysis (DH) on the free volume properties of poly(vinyl alcohol) (PVA) were studied using positron annihilation lifetime spectroscopy. Both glycerol and propylene glycol caused an increase in the free volume cavity radius, although exhibited distinct plasticization behavior, with glycerol capable of occupying existing free volume cavities in the PVA to some extent. The influence of water, normally present in PVA film under atmospheric conditions, was also isolated. Water added significantly to the measured free volume cavity radius in both plasticized and pure PVA matrices. Differences in plasticization behavior can be attributed to the functionality of each plasticizing additive and its hydrogen bonding capability. The increase in cavity radii upon plasticizer loading shows a qualitative link between the free volume of voids and the corresponding reduction in Tg and crystallinity. Cavity radius decreases with increasing DH, due to PVA network tightening in the absence of acetate groups. This corresponds well with the higher Tg observed in the resin with the higher DH. DH was also shown to impact the plasticization of PVA with glycerol, indicating that the larger cavities—created by the weaker hydrogen bonding acetate groups—are capable of accommodating glycerol molecules with negligible effect on the cavity dimensions.

Details

Title
The Impact of Plasticizer and Degree of Hydrolysis on Free Volume of Poly(vinyl alcohol) Films
Author
Fong, Rebecca J; Robertson, Alexander; Mallon, Peter E; Thompson, Richard L
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126664567
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.