恶液质是肿瘤常见的并发症, 临床表现为厌食乏力、进行性体重下降、消瘦、贫血等全身衰竭症状。近50%的晚期肿瘤患者会出现恶液质(Cancer-associated systemic syndrome,CASS)[1],20%的肿瘤患者直接死于恶液质[2]。在上消化道实体瘤和肺癌中,恶液质尤为常见,85%胃癌患者、61%非小细胞肺癌患者会出现恶液质[3]。恶液质往往与较低的生活质量和较差的预后相关,并可以对肿瘤的治疗产生抵抗[4]。到目前为止,有关肿瘤恶液质的发病机制仍未完全阐明。Esper等[5]发现炎性细胞因子如肿瘤坏死因子α(TNF-α)、白介素6(IL-6)、白介素1(IL-1)和干扰素γ(IFN-γ)等在肿瘤恶液质过程中扮演了重要角色,但是也有无数临床和实验研究发现,单独用细胞因子不能完全解释肿瘤相关性恶液质的发生发展机制[6-9]。一些移植瘤模型甚至没有细胞因子的参与,仍然观察到恶液质的产生,这就暗示必然有其它未知的因素参与其中。血管内皮生长因子(vascular endothelial growth factor,VEGF)是诱导肿瘤血管形成的作用最强、特异性最高的血管生长因子[10]。目前已经证实多种肿瘤细胞可表达分泌VEGF,VEGF的过度表达和肿瘤血管的过度形成都可以促进癌细胞进入血液循环而形成转移,对恶性肿瘤的治疗和预后产生重要影响。VEGF的过度表达可否导致肿瘤相关性恶液质的产生呢?本研究拟观察VEGF对荷瘤小鼠产生肿瘤相关性恶液质的作用,为明确抗VEGF治疗在肿瘤晚期中的作用提供理论依据。
1 材料与方法
1.1 材料
1.1.1 实验动物 6-8周龄雌性C57BL/6小鼠60只,体重(18±2)g,由瑞典卡洛林斯卡医学院肿瘤分子生物系动物房提供,动物伦理许可号为N275(Ethical permit number)。饲养条件为每笼6-7只小鼠,温度:(23±1)℃,湿度:50%-60%,光照时间:12小时光/12小时暗,水和饲料无限制供应。
1.1.2 细胞株 鼠源性纤维肉瘤T241-Vector,T241-VEGF两种肿瘤细胞,T241-Vector转染空质粒,T241-VEGF转染人源化的VEGF(hVEGF)cDNA[11],由瑞典卡洛林斯卡医学院肿瘤分子生物系曹义海教授提供。
1.1.3 主要试剂 一抗CD31为鼠抗小鼠单克隆抗体,购自美国Pharmingen公司,红色荧光Alexa-555山羊抗鼠单抗购自美国Molecular Probes公司,人VEGF多克隆抗体购自美国R&D system公司,细胞培养液DMEM和小牛血清购自美国Gibco公司,Hypnorm购自美国罗氏公司,Dormicum购自美国R&D system公司。
1.2 方法
1.2.1 移植瘤模型建立 将60只小鼠随机分为3组,每组20只。VEGF组:皮下接种T241-VEGF肿瘤细胞;Vector组:皮下接种T241-Vector肿瘤细胞;健康组:空白对照,未接种肿瘤细胞。肿瘤细胞培养于含有10%小牛血清的DMEM培养基(含青霉素100 U/mL和链霉素100U/mL)中,置于37 ℃、5%CO2培养箱培养至对数生长期后,先用PBS清洗2次,用0.25%胰蛋白酶消化,1 000rpm离心5 min去上清,计细胞数,并用DMEM培养基稀释至1×107/mL细胞浓度,0.1mL/只,分别接种于小鼠背部皮下。
1.2.2 观察指标 ①一般状况:每天观察小鼠的行动、对外界刺激的反应、皮毛色泽和摄食等情况,当小鼠出现体重变化、厌食、虚弱和 周及爪部皮肤苍白等情况时,进入恶液质状态。②体重和肿瘤大小:从皮下肿瘤可以触及开始,每周两次监测小鼠的体重和皮下移植瘤的生长情况,测量肿瘤长径(A)和垂直横径(B),按公式V =A×B2/2 计算肿瘤体积,描绘肿瘤体积增长曲线,观察生存期。③根据瑞典动物伦理委员会规章,皮下移植瘤体积达到2.0 cm3为实验终点,肿瘤接种后第32天VEGF组肿瘤体积达到2.0 cm3,即处死全部剩余小鼠,切除肝脏、脾脏、肾上腺、股骨和移植瘤。
1.2.3 血清VEGF含量检测 肿瘤接种后第32天,处死荷瘤小鼠和健康组小鼠,处死前Hypnorm、Dormicum腹腔注射麻醉后,左心室取血,并于室温下静置1 h待血液凝固后,3 000 rpm离心10 min,提取上层血清于-60 ℃冻存备检。用ELISA法测定各组血清中VEGF水平。
1.2.4 全血的血红蛋白和红细胞检测 第32天处死小鼠前,左心室采血取100 μL全血置于抗凝管中,与肝素混匀,测定血红蛋白和红细胞计数。
1.2.5 组织病理学检测 各组小鼠的肝脏、脾脏、肾上腺、下肢骨和皮下移植瘤用4%PFA(多聚甲醛)溶液固定24 h,然后PBS换洗,置于4 ℃冷室保存。肝脏、脾脏和下肢骨石蜡包埋后切片,切片厚度为4 μm,HE(苏木精-伊红)染色。
1.2.6 共聚焦荧光显微镜观察肿瘤血管 皮下移植瘤细胞已经转染绿色荧光GFP,采用Whole-Mount染色,CD31抗体标记血管内皮细胞,荧光共聚焦显微镜(Zeiss Confocal LSM510 microscope;Carl Zeiss,Jena,德国),观察肿瘤血管形态[12]。
1.3 统计学分析
采用SPSS 12.0统计分析软件进行分析。所有数据以Mean±SD表示,组间比较采用t 检验,以P < 005为有统计学差异。
2 结果
2.1 一般指标
实验开始时,肿瘤细胞皮下接种后(4-5)d,肿瘤开始可以触及,一周时较明显,此后VEGF组荷瘤小鼠的皮下移植瘤明显比Vector组移植瘤生长迅速,从第10天开始有明显差异(P < 005)。VEGA组荷瘤小鼠的体重早期先上升,在接种后第14天至顶峰,第7-18天与健康组相比,有明显差异(P < 005),随后体重逐渐下降,至第25-32天体重低于健康组和Vector组,有明显差异(P < 005)。健康组小鼠和Vector组荷瘤小鼠则见体重逐渐增加,未见消瘦乏力等情况。以接种第32天为时间截点,观察小鼠的生存曲线,从第23天开始VEGA组小鼠开始死亡,至第28天50%小鼠死于肿瘤相关性恶液质,而Vector组和健康组小鼠均存活(图1)。
2.2 严重贫血
大体观察,VEGF组荷瘤小鼠的 鼻周围无毛区域、前后爪、耳部均明显苍白、缺乏光泽。外周血的血象分析示:VEGF组、Vector组和健康组小鼠的红细胞计数分别为(6.35±0.67,8.02±0.86,9.30±0.36)1012/L,血红蛋白水平分别为(93.25±5.80,124.50±4.90,145.30±8.20)g/L。VEGF组小鼠红细胞和血红蛋白与健康组相比,明显下降(P < 001);与Vector组相比,有明显降低(P < 005)(图2)。
2.3 组织学表现
各组小鼠的肝脏、脾脏、肾上腺和下肢骨做HE染色,健康组和Vector组小鼠见肝脏小叶结构清晰,脾脏和肾上腺皮质组织结构致密,血窦未见扩张。而VEGF组小鼠的肝脏组织水肿,小叶结构欠清晰,大部分肝细胞胞质疏松、淡染。肝血窦及中央静脉扩张。脾脏肿大,组织结构疏松,脾血窦扩张、充血。肾上腺皮质结构疏松,血管间隙扩大。健康组和Vector组小鼠的骨髓片见造血细胞丰富且分布均匀,而VEGF组骨髓片见造血细胞稀少,巨核细胞减少,骨髓间质血管扩张(图3)。
2.4 血清hVEGF水平
用ELISA法测定各组血清中VEGF水平,健康组为0,Vector组为(0.02±0.005)ng/mL,VEGF组较Vector组明显升高,为(1.12±0.10)ng/mL(P < 001)(图4)。
2.5 肿瘤血管改变
VEGF组小鼠的皮下移植瘤抗CD31抗体标记的红色血管呈现原始、扩张的窦状隙结构,血管丛表现为紊乱无序、扭曲、内部相互交通。Vector组小鼠的皮下移植瘤见血管呈清晰的树枝状结构,未见扩张血管丛。定量分析示VEGF组移植瘤的血管密度较Vector组明显增高(P < 005)(图5)。
图 1 各组小鼠的一般指标 A:VEGF组移植瘤生长迅速;B:VEGA组小鼠体重早期先上升,晚期逐渐下降;C:第32天VEGA组小鼠死亡50%,健康组和Vector组小鼠均存活。 Fig 1 The general examination of mice in different groups A: The xenograft tumors in VEGF group grew faster than the Vector group; B: The body weights of VEGF group mice increased in early stage and lost in advanced stage; C: 50% mice in VEGF group died and all mice in other groups were alive on day 32.
图2 VEGF组小鼠出现严重贫血表现 A:VEGF组小鼠足、 、鼻和 唇周围等无毛区域出现明显苍白;B:VEGF组小鼠外周血红细胞明显减低;C:VEGF组小鼠外周血的血红蛋白明显下降。 Fig 2 VEGF group mice revealed a severe anemic phenotype A: VEGF group mice manifested as considerable paleness of several hairless regions of the mouse body, including the paws, mouth, nose, and genitals; B: The concentration of erythrocytes in VEGF group was significantly reduced; C: The level of hemoglobin in VEGF group was declined.
图3 荷瘤小鼠肝脏、脾脏、肾上腺和骨髓的病理学检测(×200) Vector组:CV-肝脏中央静脉,WP-脾脏白髓,RP-脾脏红髓,Cx-肾上腺皮层,M-肾上腺髓质;VEGF组:肝脏和脾脏中蓝色箭头示扩张的肝血窦,肾上腺中黑色箭头示扩张的血管,骨髓中黑色箭头示造血细胞。 Fig 3 Histology analysis of liver, spleen, adrenal gland and bone-marrow (×200) Vector group: CV-central vein, WP-White pulp, RP- Red Pulp, Cx-cortex, M-medulla; VEGF group: blue arrow showed the expanding hepatic sinusoid in liver and spleen, black arrow demonstrated the expanding vessels in adrenal gland, black arrow indicated the hematopoietic cell in bone marrow.
图4 ELISA 法检测示VEGF组小鼠血清VEGF水平明显高于其它组 Fig4 The circulating VEGF level of VEGF group was higher than other groups by ELISA assay
图5 荷瘤小鼠皮下移植瘤的血管形态(50 μm),CD31-标记内皮细胞 ,GFP-T241肿瘤细胞已转染绿色荧光蛋白 A:VEGF组移植瘤的血管结构紊乱、无序和扭曲;B:VEGF组移植瘤CD31标记的血管明显多于对照组。 Fig 5 The vessels phenotype in transplanted tumor (Scale bar, 50 μm),CD31-endothelial cell marker; GFP-Tumor cell transfect green fluorescence protein A: The vascular structures in VEGF group manifested primitive, disorganized and tortuous compared with Vector group; B: The CD31 marked the vessels in tumor of VEGF group were more than Vector group.
3 讨论
VEGF是一种特异性作用于血管内皮细胞的多功能细胞因子,能引起血管通透性增加和细胞基质成分改变,诱导血管形成。本实验中VEGF高表达的皮下移植瘤生长迅速,移植瘤的血管染色见CD31阳性的内皮细胞呈现原始、扩张的窦状隙结构,血管丛表现为紊乱无序、扭曲、内部相互交通。这些血管为肿瘤生长提供了丰富的营养物质,肿瘤不断生长反过来又分泌大量的VEGF进入外周血,血浆中可以检测到高水平VEGF。而血浆中的VEGF能够增加内皮细胞磷脂酶C的活性,通过肌醇酯水解促进第二信使产生,诱导内皮细胞增殖,同时增殖了的内皮细胞又可分泌多种促肿瘤生长物质,VEGF就是通过以上方式与肿瘤的生长、侵袭和转移紧密相关。
最近研究[13]表明,动物模型和肿瘤患者外周血循环中的VEGF水平与肿瘤相关性恶液质的严重程度呈正比。本实验中VEGA组荷瘤小鼠血清中VEGF高表达,小鼠出现肝脾肿大、体重下降、贫血等全身症状,与文献报道相符。其中体重下降是描述肿瘤相关性恶液质的最重要指标,流行病学资料[14]显示86%肿瘤患者在临终1-2周时间内都出现体重减轻。但本实验初期,VEGF组荷瘤小鼠的体重先上升,原因是早期肿瘤分泌的VEGF导致肝脾肿大,体重增加。而实验后期体重逐渐下降,低于健康组和Vector组,是由于疾病晚期大量VEGF蓄积,逐渐损害肝脾、骨髓等多脏器的结构和功能,小鼠出现体重下降等恶液质表现。伴随肿瘤生长不断分泌VEGF,VEGF持续积累于多种组织和器官中,逐渐启动各组织的血管内皮生成,促进新生血管生长。肝脏、脾脏的血管结构表现为扭曲、扩张、无序化,肝脾出现肿大。VEGF可以作用于荷瘤小鼠骨髓,导致髓窦内血管扩张,造血细胞大量减少导致外周血的红细胞和血红蛋白水平显著下降,小鼠出现 周、前后爪等区域苍白等明显的贫血表现。临床实践中,贫血可影响到全身各个脏器,引起不同的症状如头晕、疲劳、呼吸困难、压抑、食欲减退、消化不良、皮温降低,甚至可引起肺水肿和心力衰竭等[15],这些症状可以干扰肿瘤患者的日常生活,影响其生理、心理和精神健康,最终使患者的生活质量下降[16-17],增加死亡率[18]。本实验中VEGF组荷瘤小鼠红细胞和血红蛋白降低,出现贫血症状,从而生存率明显下降,与临床实际相符。观察小鼠的生存曲线,从第23天开始VEGA组小鼠开始死亡,至第28天大约50%死于肿瘤相关性恶液质。而Vector组和健康组小鼠均未见死亡。本研究证实肿瘤分泌的VEGF水平增高可以降低荷瘤小鼠的生存期。由此可见,为了改善肿瘤患者的生存期,治疗不能仅仅针对肿瘤组织本身,非肿瘤组织也是重要的治疗靶点。非肿瘤组织功能和结构的病理改变能导致恶液质等全身症状的出现,降低肿瘤患者的生存率。
综上所述,VEGF在荷瘤小鼠肿瘤相关性恶液质的发生过程中起到关键作用,为临床应用抗VEGF治疗肿瘤相关性恶液质提供了新的理论依据,更为进展期肿瘤患者联合抗VEGF治疗奠定了实验基础。
Bozzetti F. Continuing: Biology of cachexia. J Natl Cancer Inst, 1999, 91(12): 1765-1770.
MacDonald N, Easson AM, Mazurak VC, et al . Understanding and managing cancer cachexia. J Am Coll Surg, 2003, 197(1): 143-161.
Stewart GD, Skipworth RJ, Fearon KC. Cancer cachexia and fatigue. Clin Med, 2006, 6(2): 140-143.
Dewys W. Management of cancer cachexia. Semin Oncol, 1985, 12(4):452-460.
Esper DH, Harb WA. The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract, 2005, 20(4): 369-376.
Costelli P, Llovera M, Carbo N, et al . Interleukin-1 receptor antagonist (IL-1α) is unable to reverse cachexia in rats bearing an ascites hepatoma (Yoshida AH-130). Cancer Lett, 1995, 95(1-2): 33-38.
Socher SH, Martinez D, Craig JB, et al . Tumor necrosis factor not detectable in patients with clinical cancer cachexia. J Natl Cancer Inst, 1988, 50: 595-598.
Matthys PL, Dijkmans R, Proost P, et al . Severe cachexia in mice inoculated with interferon-γ producing tumor cells. Int J Cancer, 1991, 49(1): 77-82.
Kayacan O, Karnak D, Beder S, et al . Impact of TNF-alpha and IL-6 levels on development of cachexia in newly diagnosed NSCLC patients. Am J Clin Oncol, 2006, 29(4): 328-335.
Cao Y. Opinion: Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer, 2005, 5(9): 735-743.
Eriksson A, Cao R, Pawliuk R, et al . Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell, 2002, 1(1): 99-108.
Cao R, Björndahl MA, Gallego MI, et al . Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood, 2006, 107(9): 3531-3536.
Yuan Xue, Piotr Religa, Renhai Cao, et al . Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancerassociated systemic syndrome. Proc Natl Acad Sci U S A, 2008, 105(47): 18513-18518.
Teunissen SC, Wesker W, Kruitwagen C, et al . Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manage, 2007, 34(1): 941-944.
Beguin Y. Prediction of response and other improvements on the limitations of recombinant human erythropoietin therapy in an anemic cancer patients. Haematologica, 2002, 87(11): 1209-1221.
Curt GA, Breitbart W, Celia D, et al . Impact of cancer-related fatigue on the lives of patients: new findings from the fatigue coalition. The Oncologist, 2005, 5: 353-360.
Jacobsen PB, Thors CL, Cawley M, et al . Relation of decline in hemoglobin to cognitive functioning and fatigue during chemotherapy treatment. Proc Am Soc Clin Oncol, 21: 2002 (abstr 1542).
Caro JJ, Salas M, Ward A, et al . Anemia as all independent prognostic factor for survival in patients with cancer: a systemic quantitative review. Cancer, 2001, 91(2): 2214-2221.
*Department of Pulmonary Medicine, Shanghai Chest Hospital Affiliated to Jiaotong University, Shanghai 200030, China; #Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, S-17177 Stockholm, Sweden
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2009. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
背景与目的 VEGF在肿瘤发展中起着重要的作用, 是肿瘤治疗的靶点之一。本研究目的是观察VEGF高表达的荷瘤小鼠各脏器的病理改变, 并探讨VEGF在肿瘤相关性恶液质发展过程中的作用。方法 将鼠源性纤维肉瘤细胞T241-VEGF和T241-Vector注射至小鼠背侧皮下,制备移植瘤模型,观察荷瘤小鼠一般情况,记录生存时间,检测血红蛋白和红细胞,测定血清hVEGF含量,病理学检查肝脏、脾脏、肾上腺、骨髓情况,共聚焦显微镜观察皮下肿瘤血管形态学变化。结果 VEGF组荷瘤小鼠出现严重的贫血、体重减轻和肝脾肿大等恶液质表现,生存率明显下降。外周血红细胞和血红蛋白明显下降,血清VEGF却明显升高。肝脏、脾脏、肾上腺和骨髓的组织病理学检测异常,移植瘤血管形态迥异。结论 肿瘤分泌的VEGF作用于荷瘤小鼠的多种组织和器官,表现为典型恶液质症状。提示VEGF参与荷瘤小鼠肿瘤相关性恶液质的发生和进展,为临床应用抗VEGF治疗肿瘤相关性恶液质提供了新的理论依据,更为晚期肿瘤患者联合抗VEGF治疗奠定了实验基础。
Background and objective VEGF plays an important role in the development of cancer. The aim of this study is to observe the structural alterations in multiple organs of high VEGF expression mice, and insight into the role of tumor-derived VEGF in the development of CASS. Methods Murine fibrosarcoma of T241-VEGF and T241-Vector tumor cells were transplanted subcutaneously in mice to construct the xenograft tumor model. The mice gross examinations were observed and the percentage of survival animals in each group is presented. The level of hemoglobin, the numbers of erythrocytes and serum concentration of VEGF in peripheral blood were analyzed. Histological analysis of liver, spleen, adrenal gland and bone-marrow were applied. Vascular networks in tumors were analyzed under a confocal microscope. Results The VEGF-expressing tumor bearing mice manifested CASS by severe anemia, hepatosplenomegaly and loss of body weight. The survival rate of mice was decreased. The level of hemoglobin and erythrocytes in circulating blood were significantly reduced (P<0.01), with the increased serum concentration of VEGF. The blood vessels of tumor appeared as primitive and dilated sinusoidal vascular structures. Conclusion The tumor-produced VEGF affect multiple tissues, organs and resulted in CASS in mice model. It suggest that VEGF might be involved in the occurrence and development of CASS. It might be helpful for anti-VEGF therapy in clinical CASS and combing anti-VEGF therapy in advanced cancer patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer