Abstract

Normal pregnancy requires adaptations of the maternal vasculature. During preeclampsia these adaptations are not well established, which may be related to maternal hypertension and proteinuria. The effects of preeclampsia on the maternal vasculature are not yet fully understood. We aimed to evaluate gene expression in aortas of pregnant rats with experimental preeclampsia using a genome wide microarray. Aortas were isolated from pregnant Wistar outbred rats with low-dose LPS-induced preeclampsia (ExpPE), healthy pregnant (Pr), non-pregnant and low-dose LPS-infused non-pregnant rats. Gene expression was measured by microarray and validated by real-time quantitative PCR. Gene Set Enrichment Analysis was performed to compare the groups. Functional analysis of the aorta was done by isotonic contraction measurements while stimulating aortic rings with potassium chloride. 526 genes were differentially expressed, and positive enrichment of “potassium channels”, “striated muscle contraction”, and “neuronal system” gene sets were found in ExpPE vs. Pr. The potassium chloride-induced contractile response of ExpPE aortic rings was significantly decreased compared to this response in Pr animals. Our data suggest that potassium channels, neuronal system and (striated) muscle contraction in the aorta may play a role in the pathophysiology of experimental preeclampsia. Whether these changes are also present in preeclamptic women needs further investigation.

Details

Title
Experimental preeclampsia in rats affects vascular gene expression patterns
Author
Lip, Simone V 1   VIAFID ORCID Logo  ; Anne Marijn van der Graaf 2 ; Wiegman, Marjon J 1 ; Scherjon, Sicco A 1 ; Boekschoten, Mark V 3 ; Plösch, Torsten 1 ; Faas, Marijke M 4 

 Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands 
 Department of Pathology and Medical Biology, Div. of Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands 
 Nutrition, Metabolism and Genomics group, Wageningen University, Wageningen, The Netherlands 
 Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Div. of Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands 
Pages
1-13
Publication year
2017
Publication date
Nov 2017
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2127646466
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.