It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thrombopoietin (TPO) is the master cytokine regulator of megakaryopoiesis. In addition to regulation of megakaryocyte and platelet number, TPO is important for maintaining proper hematopoietic stem cell (HSC) function. It was previously shown that a number of lymphoid genes were upregulated in HSCs from Tpo−/− mice. We investigated if absent or enhanced TPO signaling would influence normal B-lymphopoiesis. Absent TPO signaling in Mpl−/− mice led to enrichment of a common lymphoid progenitor (CLP) signature in multipotential lineage-negative Sca-1+c-Kit+ (LSK) cells and an increase in CLP formation. Moreover, Mpl−/− mice exhibited increased numbers of PreB2 and immature B-cells in bone marrow and spleen, with an increased proportion of B-lymphoid cells in the G1 phase of the cell cycle. Conversely, elevated TPO signaling in TpoTg mice was associated with reduced B-lymphopoiesis. Although at steady state, peripheral blood lymphocyte counts were normal in both models, Mpl−/− Eµ-myc mice showed an enhanced preneoplastic phase with increased numbers of splenic PreB2 and immature B-cells, a reduced quiescent fraction, and augmented blood lymphocyte counts. Thus, although Mpl is not expressed on lymphoid cells, TPO signaling may indirectly influence B-lymphopoiesis and the preneoplastic state in Myc-driven B-cell lymphomagenesis by lineage priming in multipotential progenitor cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 The Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Australia; The University of Melbourne, Department of Medical Biology, 1 G Royal Parade, Australia
2 The Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Australia
3 The Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Australia; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, P.O. Box 431, Gothenburg, Sweden
4 The Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Australia; The University of Melbourne, Department of Medical Biology, 1 G Royal Parade, Australia; Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
5 The University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Melbourne, VIC, Australia