It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Homeobox (HB) genes are crucial for plant growth and development processes. They encode transcription factors and responses to various stresses, as reported by recent emerging evidence. In this study, a total of 113 BraHB genes were identified in Brassica rapa. On the basis of domain organization and phylogenetic analysis, the BraHBs were grouped into nine subclasses, in which homeobox leucine-zipper (HB LZP-III) showed the highest number of genes (28) compared to other subclasses. The BraHBs exhibited similarities in exon–intron organization and motif composition among the members of the same subclasses. The analysis revealed that HB-Knotted was more preferentially retained than any other subclass of BraHB. Furthermore, we evaluated the impact of whole-genome triplication on the evolution of BraHBs. In order to analyze the subgenomes of B. rapa, we identified 39 paralogous pairs for which synonymous substitution values were lower than 1.00 for further purifying selection. Finally, the expression patterns of BraHBs across six tissues expressed dynamic variations combined with their responses against multiple stresses. The current study provides brief information on the homeobox gene family in B. rapa. Our findings can serve as a reference for further functional analysis of BraHBs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
2 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China; New Rural Research Institute in Lianyungang, Nanjing Agricultural University, Nanjing, P. R. China