Full Text

Turn on search term navigation

Copyright © 2018 Xingdang Kang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper investigates the consistency definition and the weight-deriving method for additive interval fuzzy preference relations (IFPRs) using a particular characterization based on logarithms. In a recently published paper, a new approach with a parameter is developed to obtain priority weights from fuzzy preference relations (FPRs), then a new consistency definition for the additive IFPRs is defined, and finally linear programming models for deriving interval weights from consistent and inconsistent IFPRs are proposed. However, the discussion of the parameter value is not adequate and the weights obtained by the linear models for inconsistent IFPRs are dependent on alternative labels and not robust to permutations of the decision makers’ judgments. In this paper, we first investigate the value of the parameter more thoroughly and give the closed form solution for the parameter. Then, we design a numerical example to illustrate the drawback of the linear models. Finally, we construct a linear model to derive interval weights from IFPRs based on the additive transitivity based consistency definition. To demonstrate the effectiveness of our proposed method, we compare our method to the existing method on three numerical examples. The results show that our method performs better on both consistent and inconsistent IFPRs.

Details

Title
A New Approach to Derive Priority Weights from Additive Interval Fuzzy Preference Relations Based on Logarithms
Author
Kang, Xingdang 1   VIAFID ORCID Logo  ; Wenning Hao 1   VIAFID ORCID Logo  ; Zhang, Hongjun 1   VIAFID ORCID Logo  ; Qi, Xiuli 1   VIAFID ORCID Logo  ; Yin, Chengxiang 2   VIAFID ORCID Logo 

 Army Engineering University of PLA, Nanjing, China 
 Force 31432 of PLA, Shenyang, China 
Editor
Francesco Lolli
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2129406203
Copyright
Copyright © 2018 Xingdang Kang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/