It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present a multimodal method combining quantitative electroencephalography (EEG), behavior and pharmacology for pre-clinical screening of analgesic efficacy in vivo. The method consists of an objective and non-invasive approach for realtime assessment of spontaneous nociceptive states based on EEG recordings of theta power over primary somatosensory cortex in awake rats. Three drugs were chosen: (1) pregabalin, a CNS-acting calcium channel inhibitor; (2) EMA 401, a PNS-acting angiotensin II type 2 receptor inhibitor; and (3) minocycline, a CNS-acting glial inhibitor. Optimal doses were determined based on pharmacokinetic studies and/or published data. The effects of these drugs at single or multiple doses were tested on the attenuation of theta power and paw withdrawal latency (PWL) in a rat model of neuropathic pain. We report mostly parallel trends in the reversal of theta power and PWL in response to administration of pregabalin and EMA 401, but not minocycline. We also note divergent trends at non-optimal doses and following prolonged drug administration, suggesting that EEG theta power can be used to detect false positive and false negative outcomes of the withdrawal reflex behavior, and yielding novel insights into the analgesic effects of these drugs on spontaneous nociceptive states in rats.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA; Department of Neuroscience, Brown University, Providence, RI, USA; Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
2 Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA; Department of Neuroscience, Brown University, Providence, RI, USA
3 Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
4 Laboratory for Safety Assessment & ADME, Asahi KASEI Pharma Corporation, Shizuoka, Japan