It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Soil respiration (Rs) is an important source of atmospheric CO2 flux and is sensitive to changes in soil nutrient and water contents. Despite extensive studies on the effects of enhanced atmospheric nitrogen (N) deposition and changes in precipitation (P) on Rs, few studies have taken into account the effects of interactions between these factors on Rs of alpine grasslands. To address these questions, we investigated the effects of N addition (10 g N m−2 yr−1), changes in precipitation (±50% precipitation), and their interaction on soil respiration and its components, including heterotrophic respiration (Rh) and autotrophic respiration (Ra),in a Tibetan alpine steppe during three consecutive growing seasons. We found that Rs differed in its response to N addition and precipitation regimes. Specifically, decreased precipitation led to a significant reduction in Rs during the last two years, whereas N addition minimally impacted Rs. Another important finding was that soil respiration components differed in their response to N addition and precipitation regimes. Nitrogen addition significantly enhanced Ra, whereas Rh was not altered in response to N addition. By contrast, the precipitation regime led to marked changes in Rh, but exhibited marginally significant effects on Ra. Therefore, our findings highlighted that soil respiration differed in its response to N addition and precipitation regimes mainly due to the different responses of soil respiration components to these factors. Therefore, carbon dynamics should take soil respiration components into account under global change scenarios.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China; Qinghai Key Laboratory of Qing-Tibet Biological Resources, Xining, China; University of Chinese Academy of Science, Beijing, China
2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China; Qinghai Key Laboratory of Qing-Tibet Biological Resources, Xining, China
4 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Science, Beijing, China