It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Citalopram, a selective serotonin reuptake inhibitor (SSRI), inhibits platelet function in vitro. We have previously shown that this action is independent of citalopram’s ability to block serotonin uptake by the serotonin transporter and must therefore be mediated via distinct pharmacological mechanisms. We now report evidence for two novel and putative mechanisms of citalopram-induced platelet inhibition. Firstly, in platelets, citalopram blocked U46619-induced Rap1 activation and subsequent platelet aggregation, but failed to inhibit U46619-induced increases in cytosolic Ca2+. Similarly, in neutrophils, citalopram inhibited Rap1 activation and downstream functions but failed to block PAF-induced Ca2+ mobilisation. In a cell-free system, citalopram also reduced CalDAG-GEFI-mediated nucleotide exchange on Rap1B. Secondly, the binding of anti-GPVI antibodies to resting platelets was inhibited by citalopram. Furthermore, citalopram-induced inhibition of GPVI-mediated platelet aggregation was instantaneous, reversible and displayed competitive characteristics, suggesting that these effects were not caused by a reduction in GPVI surface expression, but by simple competitive binding. In conclusion, we propose two novel, putative and distinct inhibitory mechanisms of action for citalopram: (1) inhibition of CalDAG-GEFI/Rap1 signalling, and (2) competitive antagonism of GPVI in platelets. These findings may aid in the development of novel inhibitors of CalDAG-GEFI/Rap1-dependent nucleotide exchange and novel GPVI antagonists.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
2 Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, USA
3 Department of Biochemistry, University of Cambridge, Cambridge, UK