Full text

Turn on search term navigation

Copyright © 2018 Jun G. San Juan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Cross-country running is becoming an increasingly popular sport, with a significant participation noted at the high school level. The aim of this study was to compare gender and bilateral hip extension range of motion and hip and knee extension strength of high school cross-country runners. 31 participants volunteered from a local high school cross-country team (16 males and 15 females). The modified Thomas test was utilized to measure hip extension range of motion bilaterally using a digital inclinometer. In order to measure hip and knee isometric strengths, an isokinetic dynamometer was employed. A mixed model approach revealed a statistically significant difference in peak hip extension strength between genders but not the side. Male athletes demonstrated a 29.2 Nm/kg (P<0.05) greater force production than females during isometric hip extension strength testing. There were no significant differences in peak knee extension isometric strength, hip extension range of motion, and the ratio of peak hip and knee strength between genders and the dominant and nondominant leg. Female cross-country runners should focus on increasing hip extension strength to help maintain hip stability during running. This may be beneficial in decreasing the chances of experiencing patellofemoral pain in long-distance runners.

Details

Title
Lower Extremity Strength and Range of Motion in High School Cross-Country Runners
Author
San Juan, Jun G 1   VIAFID ORCID Logo  ; Suprak, David N 1 ; Roach, Sean M 2 ; Lyda, Marc 2 

 Department of Health and Human Development, Western Washington University, 516 High St., MS 9067, Bellingham, WA 98225, USA 
 Western Institute of Neuromechanics, 244 E. Broadway, Eugene, OR 97401, USA 
Editor
Stefano Zaffagnini
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
11762322
e-ISSN
17542103
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2132871960
Copyright
Copyright © 2018 Jun G. San Juan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/