It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aurora A is a cell cycle protein kinase implicated in multiple human cancers, and several Aurora A-specific kinase inhibitors have progressed into clinical trials. In this study, we report structural and cellular analysis of a novel biochemical mode of Aurora A inhibition, which occurs through reversible covalent interaction with the universal metabolic integrator coenzyme A (CoA). Mechanistically, the CoA 3'-phospho ADP moiety interacts with Thr 217, an Aurora A selectivity filter, which permits the formation of an unprecedented covalent bond with Cys 290 in the kinase activation segment, lying some 15 A away. CoA modification (CoAlation) of endogenous Aurora A is rapidly induced by oxidative stresses at Cys 290 in human cells, and microinjection of CoA into mouse embryos perturbs meitoic spindle formation and chromosome alignment. Aurora A regulation by CoA reveals how targeting of Aurora A might be accomplished in the future by development of a 'double-anchored' covalent inhibitor.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer