Full Text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Standard vector calculus formulas of Cartesian three space are projected onto the surface of a sphere. This produces symmetric equations with three nonindependent horizontal velocity components. Each orthogonal axis has a velocity component that rotates around its axis (eastward velocity rotates around the north–south axis) and a specific angular momentum component that is the product of the velocity component multiplied by the cosine of axis' latitude. Angular momentum components align with the fixed axes and simplify several formulas, whereas the rotating velocity components are not orthogonal and vary with location. Three symmetric coordinates allow vector resolution and calculus operations continuously over the whole spherical surface, which is not possible with only two coordinates. The symmetric equations are applied to one-layer shallow water models on cubed-sphere and icosahedral grids, the latter being computationally simple and applicable to an ocean domain. Model results are presented for three different initial conditions and five different resolutions.

Details

Title
Symmetric equations on the surface of a sphere as used by model GISS:IB
Author
Russell, Gary L 1   VIAFID ORCID Logo  ; Rind, David H 1 ; Jonas, Jeffrey 2 

 NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA 
 Center for Climate Research, Columbia University, New York, NY 10025, USA 
Pages
4637-4656
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
1991962X
e-ISSN
19919603
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2136491323
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.