It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Global lake systems have undergone rapid degradation over the past century. Scientists and managers are struggling to manage the highly degraded lake systems to cope with escalating anthropogenic pressures. Improved knowledge of how lakes and social systems co-evolved up to the present is vital for understanding, modeling, and anticipating the current and future ecological status of lakes. Here, by integrating paleoenvironmental, instrumental and historical documentary resources at multi-decadal scales, we demonstrate how a typical shallow lake system evolved over the last century in the Yangtze River Basin, an urbanized region containing thousands of shallow lakes. We find abrupt ecological shift happened in the lake ecosystem around the 1970s, with the significant reorganization of macrophyte, diatom and cladocera communities. The lake social-ecological system went through three stages as the local society transformed from a traditional agricultural before 1950s to an urbanized and industrialized society during the recent thirty years. The timing and interaction between social, economic and ecological feedbacks govern the transient and long-term dynamics of the freshwater ecosystem. Our results highlight the importance of accounting for the long-term dynamics and feedbacks between ecological, social and economic changes when defining safe operating spaces for sustainable freshwater ecosystem management.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
2 Environmental Hydrology and Water Resources Group, Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia