Magnetic neutron scattering plays a central role in determining and understanding the microscopic properties of a vast variety of magnetic systems, from the fundamental nature, symmetry, and dynamics of magnetically ordered materials to elucidating the magnetic characteristics essential in technological applications. From the early days of neutron scattering measurements at NBS/NIST, magnetic diffraction studies have been a central theme involving many universities, industrial and government labs from around the United States and worldwide. Such measurements have been used to determine the spatial arrangement and directions of the atomic magnetic moments, the atomic magnetization density of the individual atoms in the material, and the value of the ordered moments as a function of thermodynamic parameters such as temperature, pressure, and applied magnetic field. These types of measurements have been carried out on single crystals,
powders, thin films, and artificially grown multilayers, and often the information collected can be obtained by no other experimental technique. This article presents, in an historical perspective, a few examples of work carried out at the NIST Center for Neutron Research (NCNR), and discusses the key role that the Center can expect to play in future magnetism research.
Key words: applied magnetic field; magnetic multilayers; magnetic order parameter; magnetic structure; magnetic superconductors; magnetic symmetry; neutron diffraction; polarization analysis; pressure dependence.
Accepted: August 22, 2001
Available online: http://www.nist.gov/jres
1. Introduction
There have been hundreds of studies of magnetic structures and magnetic ordering at the NCNR, on wide classes of materials. A comprehensive review of this work is not possible within this context, so in the current article we simply discuss a few examples of the type of work that has been carried out at the NCNR, and provide some additional representative references to the wider distribution of work. The neutron instrumentation required to make such measurements is generally the same as needed for the determination of crystallographic structures on a variety of length scales, and the history of the available instrumentation is discussed elsewhere in this volume. Here we briefly note the neutron instrumentation presently available to the magnetism community at the NCNR, and mention plans for new instrumentation which will take the field in the United States into the next decade and beyond.
Magnetic neutron scattering originates from the interaction of the neutron's spin with the unpaired electrons in the sample. The strength of this magnetic dipole-dipole interaction is comparable to the neutron-- nuclear interaction, and thus there are magnetic cross-sections that are analogous to the nuclear ones that reveal the complete structure and full range of lattice dynamics of materials over wide ranges of length scale and energy. The traditional role of magnetic neutron scattering is the measurement of magnetic Bragg intensities in the magnetically ordered regime, which can be used to determine the spin configuration and directions of the atomic magnetic moments as a function of temperature, pressure, and applied magnetic field, on single crystals samples, powders, thin films and artificially grown multilayers [1]. Early studies addressed materials such as spinels and ferrites, followed by rare-earth intermetallics [2] and rare earth hydrides [3]. One topic that has sustained interest over the years, though, is the magnetic ordering that occurs in superconductors [4-7], and we will present some examples below. Other types of systems that have been investigated with magnetic diffraction include heavy fermion systems [8-13], ruthenates [14-15] and cobalates [16-17], amorphous [18] and nanocrystalline [19-21] systems, frustrated magnets [22-24], molecular magnets, [25-26] and colossal magnetoresistive oxides [27-33].
5. Future
In recent years the new suite of cold neutron instrumentation has developed into the best facilities available in the U.S., and these new world-class neutron spectrometers have dramatically improved our measurement capability for exploring the properties of magnetic materials. Presently we are developing a new suite of thermal neutron instrumentation that will be unparalleled in this country, and we anticipate that these new instruments will produce an equally important impact on future investigations of magnetic phenomena.
One of the advantages of working at a neutron facility with a suite of modern instruments is that one has the ability to explore a wide range of phenomena, from domain structures, ferrofluids, and magnetically active bio-organisms with SANS, to multilayer magnets with reflectometry, to magnetic diffraction studies as a function of temperature, pressure, and applied magnetic and electric fields. Magnetic neutron scattering presently plays a dominant role in addressing these kinds of problems, and this will no doubt continue for many years to come.
Acknowledgments
The authors have collaborated with many researchers over the years as indicated in the references, and we thank our collaborators for working with us on these very interesting and productive endeavors.
6. References
[1] J. W. Lynn, J. Appl. Phys. 75, 6806 (1994); J. W. Lynn, Magnetic Neutron Scattering, Chap. 13.b.2 in Methods in Materials Research: A Current Protocols Publication, edited by E. N. Kaufmann, R. Abbaschian, A. Bocarsly, C-L. Chien, D. Dollimore, B. Doyle, A. Goldman, R. Gronsky, S. Pearton, and J. Sanchez, eds., John Wiley & Sons (2000).
[2] J. J. Rhyne, IEEE Magn. 8, 105 (1972).
[3] J. J. Rhyne, K. Hardman-Rhyne, H. K. Smith, and W. E. Wallace, J. Less Common Metals 94,95 (1983); T. J. Udovic, Q. Huang, J. W Lynn, R. W. Erwin, and J. J. Rush, Phys. Rev. B59, 11852 (1999).
[41 J. W. Lynn, J. Less Comm. Metals 94, 75 (1983).
[51 J. W. Lynn, ed., High Temperature Superconductivity, SpringerVerlag (1990).
[61 J. W. Lynn, J. Alloys Compounds 181, 419 (1992); J. W. Lynn, J. Alloys Compounds 250, 552 (1997).
[7] J. W. Lynn and S. Skanthakumar, Neutron Scattering Studies of Lanthanide Magnetic Ordering, Vol. 31, Chap. 199 in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, Jr. , L. Eyring, and M. B. Maple, eds. North Holland, Amsterdam (2001) p. 313.
[81 A. Schroder, J. W. Lynn, M. Loewenhaupt, and H. v. Ldhneysen, Physica B 199-200, 47 (1994).
[9] M. C. Aronson, R. Osborn, R. A. Robinson, J. W. Lynn, R. Chao, C. L. Seaman, and M. B. Maple, Phys. Rev. Lett. 75, 725 (1995).
[10] R. A. Robinson, M. Kohgi, T. Osakabe, F. Trouw, J. W. Lynn, P C. Canfield, J. D. Thompson, Z. Fisk, and W. P. Beyermann, Phys. Rev. Lett. 75, 1194 (1995).
[11] W-H. Li, J. C. Peng, Y. C. Lin, K. C. Lee, J. W. Lynn, and Y. Y. Chen, J. Appl. Phys. 83, 6426 (1998).
[121 W. Bao, P G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J. W. Lynn, and R. W. Erwin, Phys. Rev. B62, R14621 (2000). [13] J. W Lynn, N. Rosov, S. N. Barilo, L. Kurnevitch, and A. Zhokhov, Chinese J. Phys. 38, 286 (2000).
[141 Q. Huang, J. W. Lynn, R. W. Erwin, J. Jarupatrakorn, and R. J. Cava, Phys. Rev. B58, 8515 (1998).
[15] P. Khalifah, R. W. Erwin, J. W. Lynn, Q. Huang, B. Batlogg, and R. J. Cava, Phys. Rev. B60, 9573 (1999).
[16] R. J. Cava, K. Yamaura, S. Loureiro, Q. Huang, R. W. Erwin, J. W. Lynn, and D. Young, Phycsica C 341, 351 (2000).
[171 1. 0. Troyanchuk, D. D. Khalyavin, J. W. Lynn, R. W. Erwin, Q. Huang, H. Szymczak, R. Szymcazk, and M. Baran, J. Appl. Phys. 88, 360 (2000).
[18] J. W. Lynn and J. J. Rhyne, Spin Dynamics of Amorphous Magnets, Chap. 4 in Spin Waves and Magnetic Excitations, A. S. Borovik-Romanov and S. K. Sinha, eds., Modern Problems in Condensed Matter Sciences, Vol. 22.2, North Holland (1988); J. W. Lynn and J. A. Fernandez-Baca, Chap. 5 in The Magnetism of Amorphous Metals and Alloys, J. A. Fernandez-Baca and W. Y. Ching, eds., World Scientific (1995).
[19] M. R. Fitzsimmons, J. A. Eastman. R. A. Robinson, and J. W. Lynn, J. Appl. Phys. 78, 1364 (1995); M. R. Fitzsimmons, J. A. Eastman, R. A. Robinson, and J. W. Lynn, J. NanoStructured Mater. 7, 179 (1996).
[201 M. S. Seehra, V. Suresh Babu, and J. W. Lynn, Phys. Rev. B61, 3513 (2000).
[21] J. R. Childress, C. L. Chien, J. J. Rhyne, and R. W. Erwin, J. Mag. Mag. Mater. 104-107, 1585 (1992).
[221 J. S. Gardner, B. Gaulin, S. -H. Lee, C. Broholm, N. P. Raju, and I. E. Greedan, Phys. Rev. Lett. 83, 211 (1999).
[23] S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff 11, and S-W. Cheong, Phys. Rev. Lett. 84, 3718 (2000).
[24] C. Broholm, Daniel H. Reich, G. Aeppli, S, -H. Lee, D. Dender, P Hammar, G. Xu, J. F. DiTusa, and A. P. Ramirez, Dynamical Properties of Unconventional Magnetic Systems, Vol. 349 in NATO ASI Series, Series E: Applied Sciences, A. T. Skjeltorp and D. Sherrington, eds., Kluwer Academic Publishers, Boston (1998) p. 77.
[25] J. L. Manson, C. R. Kmety, Q. Huang, J. W Lynn, G. Bendele, S. Pagola, P. W Stephens, L. M. Liable-Sands, A. L. Rheingold, A. J. Epstein, and J. S. Miller, Chem. Mater. 10, 2552 (1998); J. L. Manson, Q. Huang, 1. W. Lynn, H.-J. Koo, M.-H. Whangbo, R. Bateman, T. Otsuka, N. Wada, K. Awaga, D. N. Argyriou, and J. S. Miller, J. Am. Chem. Soc. 123, 162 (2001).
[26] C. R. Kmety, J. L. Manson, Q. Huang, J. W Lynn, R. W. Erwin, J. S. Miller, and A. J. Epstein, J. Molec. Liquid Cryst. 334, 631 (1999); C. R. Kinety, J. L. Manson, Q. Huang, J. W. Lynn, R. W Erwin, J. S. Miller, and A. J. Epstein, Phys. Rev. B60, 60 (1999); C. R. Kmety, Q. Huang, J. W. Lynn, R. W Erwin, J. L. Manson, S. McCall, J. E. Crow, K. L. Stevenson, J. S. Miller, and A. J. Epstein, Phys. Rev. B62, 5576 (2000).
[271 J. W. Lynn, R. W. Erwin, J. A. Borchers, Q. Huang, A. Santoro, J-L. Peng, and Z. Y. Li, Phys. Rev. Lett. 76, 4046 (1996).
[28] J. W. Lynn, Int. J. Mod. Phys. 12, 3355 (1998); J. W. Lynn, J. Supercond. Novel Magnet. 13, 263 (2000).
[291 Q. Huang, A. Santoro, J. W Lynn, R. W Erwin, J. A. Borchers, J. L. Peng, and R. L. Greene, Phys. Rev. B55, 14987 (1997). Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, K. Ghosh, and R. L. Greene, Phys. Rev. B58, 2684 (1998); Q. Huang, J. W. Lynn, R. W Erwin, A. Santoro, D. C. Dender, V. N. Smolyaninova, K. Ghosh, and R. L. Greene, Phys. Rev. B61, 8895 (2000).
[301 L. Vasiliu-Doloc, J. W Lynn, A. H. Moudden, A. M. de Leon-Guevara, and A. Revcolevschi, Phys. Rev. B58, 14913 (1998).
[31] L. Vasiliu-Doloc, S. Rosenkranz, R. Osborn, S. K. Sinha, J. W. Lynn, J. Mesot, 0. Seeck, G. Preosti, A. J. Fedro, and J. F. Mitchell, Phys. Rev. Lett. 83, 4393 (1999).
[32] C. P. Adams, J. W. Lynn, Y. M. Mukovskii, A. A. Arsenov, and D. A. Shulyatev, Phys. Rev. Lett. 85, 3954 (2000).
[331 W Lynn, L. Vasiliu-Doloc, and M. A. Subramanian, Phys. Rev. Lett. 80, 4582 (1998).
[34] J. W. Lynn and C. J. Glinka, J. Mag. Mag. Mater. 14, 179 (1979); J. A. Fernandez-Baca and J. W. Lynn, J. Appl. Phys. 52, 2183 (1981).
[351 J. W. Lynn, J. A. Gotaas, R. W. Erwin, R. A. Ferrell, J. K. Bhattacharjee, R. N. Shelton and P. Klavins, Phys. Rev. Lett. 52, 133 (1984). See also J. A. Gotaas and J. W. Lynn, J. Mag. Mag. Mater. 54-57, 1529 (1986).
[36] J. W Lynn, J. L. Ragazzoni, R. Pynn and J. Joffrin, J. Physique Lettres 42, L45 (1981); J. W. Lynn, R. Pynn, J. Joffrin, J. L. Ragazzoni and R. N. Shelton, Phys. Rev. B27, 581 (1983).
[37] B. Keimer, I. Aksay, F. Dogan, R. W. Erwin, J. W Lynn, and M. Sarikaya, Science 262, 83 (1993); B. Keimer, W. Y. Shih, R. W. Erwin, J. W. Lynn, F. Dogan, and 1. A. Aksay, Phys. Rev. Lett. 73, 3459 (1994).
[38] J. W. Lynn, N. Rosov, T. Grigereit, H. Zhang, and T. W. Clinton, Phys. Rev. Lett. 72, 3413 (1994).
[39] X. S. Ling, S. R. Park, B. A. McClain, S. M. Choi, D. C. Dender, and J. W. Lynn, Phys. Rev. Lett. 86, 712 (2001).
[40] P. M. Gehring, K. Hirota, C. F. Majkrzak, G. Shirane, Phys. Rev. Lett. 71, 1087 (1993).
[41] C. F. Majkrzak, Acta Phys. Polonica A 96, 81(1999). [42] C. F. Majkrzak, Physica B 221, 342 (1996).
[43] J. J. Rhyne and R. W. Erwin, Handbook of Magnetic Materials Vol. 8, K. H. J. Buschow, ed., (1994).
[44] J. A. Borchers and C. F. Majkrzak, in Wiley Encyclopedia of Electronics and Electrical Engineering, John G. Webster, ed., John Wiley and Sons, Inc. (1999) p. 699.
[45] M. B. Salamon, Shantanu Sinha, J. J. Rhyne, J. E. Cunningham, Ross W Erwin, Julie Borchers, and C. P. Flynn, Phys. Rev. Lett. 56, 259 (1986).
[46] R. W. Erwin, J. J. Rhyne, M. B. Salamon, J. Borchers, Shantanu Sinha, R. Du, J. E. Cunningham, and C. P. Flynn, Phys. Rev. B 35, 6808 (1987).
[47] R. S. Beach, J. A. Borchers, A. Matheny, R. W. Erwin, M. B. Salamon, B. Everitt, K. Pettit, J. J. Rhyne, and C. P. Flynn, Phys. Rev. Lett. 70, 3502 (1993).
[48] J. A. Borchers, M. B. Salamon, R. W. Erwin, J. J. Rhyne, R. R. Du and C. P Flynn, Phys. Rev. B 43, 3123 (1991); J. A. Borchers, M. B. Salamon, R. W. Erwin, J. J. Rhyne, G. J. Nieuwenhuys, R. R. Du, C. P. Flynn, and R. S. Beach, Phys. Rev. B 44, It 814 (1991).
[49] J. A. Borchers, J. A. Dura, J. Unguris, D. Tulchinsky, M. H. Kelley, C. F. Majkrzak, S. Y. Hsu, R. Loloee, W. P. Pratt, Jr., and J. Bass, Phys. Rev. Lett. 82, 2796 (1999).
[50] J. A. Borchers, P. M. Gehring, R. W. Erwin, J. F. Ankner, C. F. Majkrzak, T. L. Hylton, K. R. Coffey, M. A. Parker, and J. K. Howard, Phys. Rev. B 54, 9870 (1996).
[51 ] A. Schreyer, J. F. Ankner, Th. Zeidler, H. Zabel, C. F. Majkrzak, M. Schafer and P. GrUnberg, Europhys. Lett. 32, 595 (1995); A. Schreyer, J. F. Ankner, Th. Zeidler, H. Zabel, M. Schafer, J. A. Wolf, P. Grinberg, and C. F Majkrzak, Phys. Rev. B 52, 16066 (1995).
[521 A. Schreyer, C. F. Majkrzak, Th. Zeidler, T. Schmitte, P. Bodeker, K. Theis-Brohl, A. Abromeit, 1. Dura, and T. Watanabe, Phys. Rev. Lett. 79, 4914 (1997).
[53] J. F. Ankner, H. Kaiser, K. Hamacher, A. Schreyer, Th. Zeidler, H. Zabel, C. F. Majkrzak, M. Schafer, and P. GrUnberg, J. Appl. Phys. 79, 4782 (1996).
[54] A. Hj6rvarsson, J. A. Dura, P. Isberg, T. Watanabe, T. J. Udovic, G. Andersson and C. F. Majkrzak, Phys. Rev. Lett. 79, 901 (1997).
[55] Y. Ijiri, J. A. Borchers, R. W. Erwin, P. J. van der Zaag, and R. M. Wolf, Phys. Rev. Lett. 80, 608 (1998); Y. Ijiri, J. A. Borchers, R. W. Erwin, S.-H. Lee, P J. van der Zaag, and R. M. Wolf, J. Appl. Phys. 83, 6882 (1998).
[561 P. J. van der Zaag, Y. Ijiri, J. A. Borchers, L. F. Feiner, R. M. Wolf, J. M. Gaines, R. W. Erwin and M. A. Verheijen, Phys. Rev. Lett. 84, 6102 (2000).
[57] J. A. Borchers, R. W Erwin, S. D. Berry, D. M. Lind, J. F. Ankner, E. Lochner, K. A. Shaw and D. Hilton, Phys. Rev. B 51, 8276 (1995); J. A. Borchers, R. W. Erwin, S. D. Berry, D. M. Lind, E. Lochner, and K. A. Shaw, Appl. Phys. Lett. 64, 381 (1994).
[58] J. A. Borchers, Y. Ijiri, D. M. Lind, P G. Ivanov, R. W. Erwin, Aron Qasba, S. H. Lee, K. V. O'Donovan, and D. C. Dender, Appl. Phys. Lett. 77, 4187 (2000).
[59] J. A. Borchers, M. J. Carey, R. W. Erwin, C. F. Majkrzak, and A. E. Berkowitz, Phys. Rev. Lett. 70, 1878 (1993); J. A. Borchers, M. J. Carey, A. E. Berkowitz, R. W. Erwin and C. F. Majkrzak, J. Appl. Phys. 73, 6898 (1993).
[60] H. Zhang, J. W. Lynn, C. F. Majkrzak, S. K. Satija, J. H. Kang, and X. D. Yu, Phys. Rev. B52, 10395 (1995).
[61] G. E. Bacon, Neutron Diffraction, 3rd Ed., Oxford Univ. Press, Oxford (1975).
[62] Q. Huang, P. Karen, V. Karen, A. Kjekshus, J. W. Lynn, A. D. Mighell, N. Rosov, and A. Santoro, Phys. Rev. B45, 9611 (1992).
[63] I. Natali Sora, Q. Huang, J. W. Lynn, N. Rosov, P. Karen, A. Kjekshus, V. L. Karen, A. D. Mighell, and A. Santoro, Phys. Rev. B49, 3465 (1994).
[64] P. Karen, A. Kjekshus, Q. Huang, J. W. Lynn, N. Rosov, I. Natali-Sora, V. L. Karen, A. D. Mighell, and A. Santoro, J. Sol. State Chem. 136, 21 (1998).
[65] J. W. Lynn, J. A. Gotaas, R. N. Shelton, H. E. Horng and C. J. Glinka, Phys. Rev. B31, 5756 (1985); Q. Li, J. W. Lynn and J. A. Gotaas, Phys. Rev. B35, 5008 (1987).
[661 H. B. Stanley, J. W. Lynn, R. N. Shelton, and P Klavins, J. Appl. Phys. 61, 3371 (1987).
[67] W-H. Li, J. W. Lynn, H. B. Stanley, T. J. Udovic, R. N. Shelton, and P. Klavins, Phys. Rev. B39, 4119 (1989).
[68] J. W. Lynn, W-H. Li, H. A. Mook, B. C. Sales, and Z. Fisk, Phys. Rev. Lett. 60, 2781 (1988).
[69] W-H. Li, J. W. Lynn, H. A. Mook, B. C. Sales, and Z. Fisk, Phys. Rev. B37, 9844 (1988).
[70] J. W. Lynn and W-H. Li, J. Appl. Phys. 64, 6065 (1988).
[711 J. W. Lynn, W-H. Li, S. F. Trevino, and Z. Fisk, Phys. Rev. B40, 5172 (1989).
[72] S. Skanthakumar, H. Zhang, T. W. Clinton, W-H. Li, J. W. Lynn, Z. Fisk, and S-W. Cheong, Physica C 160, 124 (1989); S. Skanthakumar, J. W. Lynn, J. L. Peng, and Z. Y Li, J. Mag. Mag. Mater. 104-107, 519 (1992).
[73] W-H. Li, J. W. Lynn, and Z. Fisk, Phys. Rev. B41, 4098 (1990). [74] S. Skanthakumar, J. W. Lynn, J. L. Peng, and Z. Y. Li, J. Appl. Phys. 69, 4866 (1991).
[75] N. Rosov, J. W. Lynn, H. B. Radousky, M. Bennahmias, T. J. Goodwin, P Klavins, and R. N. Shelton, Phys. Rev. B47, 15256 (1993).
[76] S. Skanthakumar, J.W. Lynn, J. L. Peng, and Z. Y. Li, Phys, Rev. B47, 6173 (1993)
[77] I. W. Sumarlin, J. W. Lynn, T. Chattopadhyay, S. N. Barilo, D. I. Zhigunov, and J. L. Peng, Phys, Rev. B51, 5824 (1995).
[78] J. W. Lynn, W.-H. Li, Q, Li, H. C. Ku, H. D. Yang, and R. N. Shelton, Phys. Rev. B36, 2374 (1987).
[79] J. W. Lynn, T. W. Clinton. W.-H. Li, R. W. Erwin, J. Z. Liu, K Vandervoort, R. N. Shelton, and P. Klavins, Phys. Rev. Lett. 63, 2606 (1989)
[80] H. Zhang, J. W. Lynn, W-H. li, T. W. CLinton, nad D. E. Morris, Ohys. rev. B41, 11229 (1990)
[81] H. Zhang, J. W. Lynn, and D. E. Morris, Phys. Rev. B45, 10022 (1992).
[82] J. A. Gotaas, J. W. Lynn, R. N. Shelton, P. Klavins, and H. F. Braun, Phys. Rev. B36. 7277 (1987).
[83] W-H. Li, J. W. Lynn, S. Shanthakumar, T. W. Clinton, A. Kebede, C.-S. Jeem J. E. Crow, and T. Mihalisin, Phys. Rec. B40, 5300 (1989).
[84] J. W. Lynn, S. Skanthakumar, I. W. Sumarlin. W.-H. Li, R. N. Shelton, J. L. Peng, Z. Fisk, and S-W. Cheong, Phys. Rev. B41, 2569 (1990).
[85] I. W. Sumarlin, S. Skanthakumar, J. W. Lynn, J. L. Peng, W. Jiang, Z. Y. Li and R. L. Greene, Phys, Rev. Lett. 68, 2228 (1992).
[86] T. E. Grigereit, J. W. Lynn, Q. Huang, A. Santoro, R. J. Cava, J. J. Krajewski, and W. F. Reck, Jr., Phys. Rev. Lett. 73, 2756 (1994)
[87] J. W. Lynn, S. Skanthakumar, Q. Huang, S. K. Sinha, Z. Hossain, L. C. Gupta, R. Nagarajan, and C. Godart, Phys. Rev. B55, 6584 (1997).
[88] S. Skanthakumar and J. W. Lynn, Physica B 259-262, 576 (1999).
[89] Y. S. Lee, R. J. Birgeneau, M. A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R. W. Erwin, S.-H. Lee, and G. Shirane, Phys. Rev. B60, 3643 (1999). See also H. Kimura, K. Hirota, H. Matsushita, K. Yamada, Y. Endoh, S. -H. Lee, C. Majkrzak, R. W. Erwin, G. Shirane, M. Greven, Y. S. Lee, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. B59, 6517 (1999).
[90] S.-M. Choi, J. W. Lynn, D. Lopez, P. L. Gammel, P. C. Canfield, and S. L. Bud'ko, Phys. Rev. Lett. 86, 712 (2001).
[91] J. W. Lynn, B. Keimer, C. Ulrich, C. Bernhard, and J. L. Tallon, Phys. Rev. B61, R14964 (2000).
J. W. Lynn, J. A. Borchers,
Q. Huang, A. Santoro, and
R. W. Erwin
National Institute of Standards and Technology,
Gaithersburg, MD 20899-0001
About the authors: J. W Lynn, J. A. Borchers, A. Santoro, and R. W Erwin are scientific staff members in the NIST Center for Neutron Research of the Materials Science and Engineering Laboratory. Q. Huang is a guest scientist in the Center, and is a member of the Department of Materials and Nuclear Engineering, University of Maryland College Park. The National Institute of Standards and Technology is an agency of the Technology Administration U.S. Department of Commerce.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Superintendent of Documents Nov/Dec 2001