It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Although several human studies have examined bisphenol A (BPA) exposure in relation to routine sperm parameters, evidence of BPA’s effects on sperm movement characteristics is limited. We examined associations of BPA exposure with sperm parameters including sperm movement characteristics among fertile men. The cross-sectional study was conducted in Sandu County, Guizhou Province, China. Subjects provided semen samples analyzed by computer-aided sperm analysis (CASA) system and urine samples for BPA assay. They were invited to complete an in-person interview with a structured questionnaire to obtain demographics, lifestyle factors, etc. In final analyses, 500 subjects were included. We used multivariate linear regression analyses to estimate associations between BPA and sperm parameters after adjusting for potential confounders. BPA was detected in 73.6% of urine samples, with a geometric mean of 0.44 μg/gCreatinine. Compared with subjects of undetected BPA, subjects with detected BPA had increased Linearity (LIN, β: 2.19, 95% confidence interval (CI): 0.37, 4.0), Straightness (STR, β: 1.47, 95% CI: 0.19, 2.75), Wobble (WOB, β: 1.75, 95% CI: 0.26, 3.25), reduced Amplitude of lateral head displacement (ALH, β: −0.26, 95% CI: −0.5, −0.02) and Mean angular displacement (MAD, β: −2.17, 95% CI: −4.22, −0.11). Subjects in the highest tertile of creatinine-adjusted BPA group had lower sperm concentration than those with undetected BPA. Dose-response relationships of BPA with LIN, WOB, ALH, MAD and sperm concentration were demonstrated by statistically significant trends across tertiles of creatinine-adjusted BPA concentrations. Similar results were obtained using unadjusted BPA concentrations. Exposure to environmental BPA would decrease sperm concentration and sperm swing characteristics (ALH and MAD), and increase sperm velocity ratios (LIN, STR and WOB), which might mediate further effects on impaired male fecundity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
2 NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
3 National Chemical Low Carbon Technology and Engineering Center, Kunshan, Jiangsu, China
4 Population and Family Planning Institute of Guizhou Province, Guiyang, Guizhou, China