It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Over one million tons of CS2 are produced annually, and emissions of this volatile and toxic liquid, known to generate acid rain, remain poorly controlled. As such, materials capable of reversibly capturing this commodity chemical in an energy-efficient manner are of interest. Recently, we detailed diamine-appended metal–organic frameworks capable of selectively capturing CO2 through a cooperative insertion mechanism that promotes efficient adsorption–desorption cycling. We therefore sought to explore the ability of these materials to capture CS2 through a similar mechanism. Employing crystallography, spectroscopy, and gas adsorption analysis, we demonstrate that CS2 is indeed cooperatively adsorbed in N,N-dimethylethylenediamine-appended M2(dobpdc) (M = Mg, Mn, Zn; dobpdc4- = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), via the formation of electrostatically paired ammonium dithiocarbamate chains. In the weakly thiophilic Mg congener, chemisorption is cleanly reversible with mild thermal input. This work demonstrates that the cooperative insertion mechanism can be generalized to other high-impact target molecules.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Department of Chemistry, University of California, Berkeley, California, USA
2 Department of Chemistry, University of California, Berkeley, California, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
3 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
4 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
6 Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA