Abstract

In this study, a homogeneous and stable dispersion of graphene oxide (GO)/carbon nanotube (CNT) complexes (GCCs) was obtained by dispersing CNTs in an aqueous solution using GO in the absence of dispersing agents. Furthermore, carboxymethyl cellulose/GCC (CMC/GCC) nanocomposite films were prepared by a simple solution mixing-evaporation method. The dispersibility of the GCCs with different CNT contents was investigated by UV-Vis spectrophotometry. The morphological and crystalline structures of the samples were analyzed by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were conducted to identify the chemical composition of GO, CNTs, and GCCs. These results revealed that CNTs could be stably dispersed in water using GO. In addition, when CMC/GCC nanocomposite films were prepared by mixing CMC and GCCs, CNTs were uniformly dispersed in the CMC matrix. The tensile behavior was investigated using a universal testing machine. The tensile strength and Young’s modulus of the CMC/GCC nanocomposite films were significantly improved by up to about 121% and 122%, respectively, compared to those of pure CMC because of uniform and strong π-π interfacial interactions between CNTs and CMC polymer.

Details

Title
Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites
Author
Yeong-Rae Son 1 ; Soo-Jin, Park 1   VIAFID ORCID Logo 

 Department of Chemistry, Inha University, Incheon, Republic of Korea 
Pages
1-10
Publication year
2018
Publication date
Dec 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2149890396
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.