It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent studies on tissue-autonomous serotonin (5-hydroxytryptamine [5-HT]) function have identified new roles for 5-HT in peripheral organs. Most of these studies were performed by crossing mice carrying the Tph1tm1Kry allele with tissue specific Cre mice. In the present study, we found that 5-HT production was not completely abolished in Tph1tm1Kry KO mice. The residual 5-HT production in Tph1tm1Kry KO mice is attributed to the expression of a truncated form of TPH1 containing the catalytic domain. Hence, in an effort to obtain mice with a Tph1 null phenotype, we generated mice harboring a new Tph1 floxed allele, Tph1tm1c, targeting exons 5 and 6 which encode the catalytic domain of TPH1. By crossing the new Tph1 floxed mice with villin-Cre or insulin-Cre mice, we observed near-complete ablation of 5-HT production in the intestine and β cells. In conclusion, this improved Tph1 floxed mouse model will serve as useful and accurate tool for analyzing peripheral 5-HT system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
2 Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
3 Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
4 Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
5 Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea