It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Retinal degenerative diseases, due to the lack of regeneration systems and self-renewable cells, often lead to visual impairment. Pax6 is a pleiotropic transcription factor and its expression level determines self-renewal status or differentiation of retinal cells. Here, we investigated the fate of simultaneous induction of retinal ganglion cell death and Pax6 overexpression in retro-differentiation of retinal cells and their commitment to re-enter into the cell cycle. Induction of acute retinal ganglion cell death and generation of mouse experimental model was performed by N-methyl D-aspartic acid (NMDA) injection. Recombinant AAV2 virus harboring PAX6 cDNA and reporter gene was injected into untreated and model mouse eyes. Histological analyses, including IHC and retinal flatmounts immunostaining were performed. The number of Ki67+ cells was clearly increased in model mice, presumably due to NMDA treatment and regardless of Pax6 over-expression. Unlike previous studies, Ki67+ cells were found in GCL layer and interestingly ONL cells expressed Sox2 stemness marker after NMDA cytotoxicity. The potential of retinal cells for robust Ki67 expression, after injury, and expression of Sox2, confirmed their intrinsic plasticity and made a vivid prospect for retinal regenerative medicine.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
2 Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
3 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
4 Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5 Department of Molecular Medicine, Faculty of Advanced Technology, Iran University of Medical Sciences, Tehran, Iran