It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recently-developed network embedding feature generation methods and deep maxout neural networks, it is possible to extract functional representations that encode direct links between protein-protein interactions information and protein function. Our novel method, STRING2GO, successfully adopts deep maxout neural networks to learn functional representations simultaneously encoding both protein-protein interactions and functional predictive information. The experimental results show that STRING2GO outperforms other network embedding-based prediction methods and one benchmark method adopted in a recent large scale protein function prediction competition.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer