Abstract

Background

We present a performance per watt analysis of CUDAlign 4.0, a parallel strategy to obtain the optimal pairwise alignment of huge DNA sequences in multi-GPU platforms using the exact Smith-Waterman method.

Results

Our study includes acceleration factors, performance, scalability, power efficiency and energy costs. We also quantify the influence of the contents of the compared sequences, identify potential scenarios for energy savings on speculative executions, and calculate performance and energy usage differences among distinct GPU generations and models. For a sequence alignment on chromosome-wide scale (around 2 Petacells), we are able to reduce execution times from 9.5 h on a Kepler GPU to just 2.5 h on a Pascal counterpart, with energy costs cut by 60%.

Conclusions

We find GPUs to be an order of magnitude ahead in performance per watt compared to Xeon Phis. Finally, versus typical low-power devices like FPGAs, GPUs keep similar GFLOPS/w ratios in 2017 on a five times faster execution.

Details

Title
DNA sequences alignment in multi-GPUs: acceleration and energy payoff
Author
Pérez-Serrano, Jesús; Sandes, Edans; Alba Cristina Magalhaes Alves de Melo; Ujaldón, Manuel
Publication year
2018
Publication date
2018
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2158159877
Copyright
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.