It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cancer stem cells (CSCs) play a key role in cancer initiation, progression and chemoresistance. Epigenetic alterations have been identified as prominent factors that contribute to the CSCs phenotype. Here, we investigated the effects of the HDAC inhibitor valproic acid (VPA) and the demethylating agent, 5’azacytidine (DAC) on the stem phenotype of MG63 and Saos2 osteosarcoma cell lines.
Methods
Saos2 and MG63 cells were treated with DAC and VPA, alone and in combination. Untreated and treated cells were examined for stemness phenotype by cytometry and real-time PCR. Sarcospheres and colonies formation were also evaluated. Moreover, histone modification and methylation were tested by flow cytomery and western blotting. HDAC2 depleted cells were examined for stemness phenotype and their ability to generate tumors in NOD/SCID IL2R-gamma-0 (NSG) mice. HDAC2 expression on human osteosarcoma tissues was evaluated.
Results
We found that DAC and VPA induce an increased expression of stem markers including CD133, OCT4, SOX2 and NANOG, and an increased ability in sarcospheres and colonies formation efficiency. Interestingly, we showed that DAC and VPA treatment decreased repressive histone markers, while increased the active ones. These histone modifications were also associated with an increase of acetylation of histones H3, a decrease of DNA global methylation, HDAC2 and DNMT3a. Furthermore, HDAC2 silenced-MG63 and Saos2 cells acquired a stem phenotype, and promoted in vivo tumorigenesis. In human osteosarcoma tissues, HDAC2 was strongly expressed in nucleus.
Conclusions
Collectively, our results suggest that VPA and DAC induce an expansion of osteosarcoma CSCs, and we report for the first time that HDAC2 is a key factor regulating both CSCs phenotype and in vivo cancer growth. In conclusion, we have identified HDAC2 as a potential therapeutic target in human osteosarcoma treatment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer