It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Identifying the factors that affect ranging behavior of animals is a central issue to ecology and an essential tool for designing effective conservation policies. This knowledge provides the information needed to predict the consequences of land-use change on species habitat use, especially in areas subject to major habitat transformations, such as agricultural landscapes. We evaluate inter-individual variation relative to environmental predictors and spatial constraints in limiting ranging behavior of female little bustards (Tetrax tetrax) in the non-breeding season. Our analyses were based on 11 females tracked with GPS during 5 years in northeastern Spain. We conducted deviance partitioning analyses based on different sets of generalized linear mixed models constructed with environmental variables and spatial filters obtained by eigenvector mapping, while controlling for temporal and inter-individual variation.
Results
The occurrence probability of female little bustards in response to environmental variables and spatial filters within the non-breeding range exhibited inter-individual consistency. Pure spatial factors and joint spatial-habitat factors explained most of the variance in the models. Spatial predictors representing aggregation patterns at ~ 18 km and 3–5 km respectively had a high importance in female occurrence. However, pure habitat effects were also identified. Terrain slope, alfalfa, corn stubble and irrigated cereal stubble availability were the variables that most contributed to environmental models. Overall, models revealed a non-linear negative effect of slope and positive effects of intermediate values of alfalfa and corn stubble availability. High levels of cereal stubble in irrigated land and roads had also a positive effect on occurrence at the population level.
Conclusions
Our results provide evidence that female little bustard ranging behavior was spatially constrained beyond environmental variables during the non-breeding season. This pattern may result from different not mutually exclusive processes, such as cost–benefit balances of animal movement, configurational heterogeneity of environment or from high site fidelity and conspecific attraction. Measures aimed at keeping alfalfa availability and habitat heterogeneity in open landscapes and flat terrains, in safe places close to breeding grounds, could contribute to protect little bustard populations during the non-breeding season.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer