It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Missing data are common in tobacco studies. It is well known that from the observed data alone, it is impossible to distinguish between missing mechanisms such as missing at random (MAR) and missing not at random (MNAR). In this paper, we propose a sensitivity analysis method to accommodate different missing mechanisms in cessation outcomes determined by self-report and urine validation results.
Methods
We propose a two-stage imputation procedure, allowing survey and urine data to be missing under different mechanisms. The motivating data were from a tobacco cessation trial examining the effects of the extended vs. standard Quit and Win contests and counseling vs. no counseling under a 2-by-2 factorial design. The primary outcome was 6-month biochemically verified tobacco abstinence.
Results
Our proposed method covers a wide spectrum of missing scenarios, including the widely adopted “missing = smoking” imputation by assuming a perfect smoking-missing correlation (an extreme case of MNAR), the MAR case by assuming a zero smoking-missing correlation, and many more in between. The analysis of the data example shows that the estimated effects of the studied interventions are sensitive to the different missing assumptions on the survey and urine data.
Conclusions
Sensitivity analysis has played a crucial role in assessing the robustness of the findings in clinical trials with missing data. The proposed method provides an effective tool for analyzing missing data introduced at two different stages of outcome assessment, the self-report and validation time. Our methods are applicable to trials studying biochemically verified abstinence from alcohol and other substances.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer