Full text

Turn on search term navigation

© 2018 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Placental dysfunction is implicated in many pregnancy complications, including preeclampsia and preterm birth (PTB). While both these syndromes are influenced by environmental risk factors, they also have a substantial genetic component that is not well understood. Precisely controlled gene expression during development is crucial to proper placental function and often mediated through gene regulatory enhancers. However, we lack accurate maps of placental enhancer activity due to the challenges of assaying the placenta and the difficulty of comprehensively identifying enhancers. To address the gap in our knowledge of gene regulatory elements in the placenta, we used a two-step machine learning pipeline to synthesize existing functional genomics studies, transcription factor (TF) binding patterns, and evolutionary information to predict placental enhancers. The trained classifiers accurately distinguish enhancers from the genomic background and placental enhancers from enhancers active in other tissues. Genomic features collected from tissues and cell lines involved in pregnancy are the most predictive of placental regulatory activity. Applying the classifiers genome-wide enabled us to create a map of 33,010 predicted placental enhancers, including 4,562 high-confidence enhancer predictions. The genome-wide placental enhancers are significantly enriched nearby genes associated with placental development and birth disorders and for SNPs associated with gestational age. These genome-wide predicted placental enhancers provide candidate regions for further testing in vitro, will assist in guiding future studies of genetic associations with pregnancy phenotypes, and aid interpretation of potential mechanisms of action for variants found through genetic studies.

Details

Title
Genome-wide maps of distal gene regulatory enhancers active in the human placenta
Author
Zhang, Joanna; Simonti, Corinne N; ⨯ John A Capra ⨯
First page
e0209611
Section
Research Article
Publication year
2018
Publication date
Dec 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2161061353
Copyright
© 2018 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.