Full Text

Turn on search term navigation

© 2018 Cassani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper analyzes distributional properties that facilitate the categorization of words into lexical categories. First, word-context co-occurrence counts were collected using corpora of transcribed English child-directed speech. Then, an unsupervised k-nearest neighbor algorithm was used to categorize words into lexical categories. The categorization outcome was regressed over three main distributional predictors computed for each word, including frequency, contextual diversity, and average conditional probability given all the co-occurring contexts. Results show that both contextual diversity and frequency have a positive effect while the average conditional probability has a negative effect. This indicates that words are easier to categorize in the face of uncertainty: categorization works best for words which are frequent, diverse, and hard to predict given the co-occurring contexts. This shows how, in order for the learner to see an opportunity to form a category, there needs to be a certain degree of uncertainty in the co-occurrence pattern.

Details

Title
Lexical category acquisition is facilitated by uncertainty in distributional co-occurrences
Author
Cassani, Giovanni; ⨯ Robert Grimm; Daelemans, Walter; Gillis, Steven
First page
e0209449
Section
Research Article
Publication year
2018
Publication date
Dec 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2161292381
Copyright
© 2018 Cassani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.