Abstract

We discuss the procedures of data aggregation as a preprocessing stage for subsequent to regression modeling. An important feature of study is demonstration of the way how represent the aggregated data. It is proposed to use piecewise polynomial models, including spline aggregate functions. We show that the proposed approach to data aggregation can be interpreted as the frequency distribution. To study its properties density function concept is used. Applying data aggregation models as input and output variables we propose a new probability density function value linear regression model (Distributions Regression). To calculate the data aggregation and regression model we employ numerical probabilistic analysis (NPA). To demonstrate the degree of the correspondence of the proposed methods to reality, we developed a theoretical framework and considered numerical examples.

Alternate abstract:

Предложены новые подходы для исследования и анализа зависимостей в эмпиричесκих данных. Обсуждаются вопросы агрегирования и различные виды математичесκих моделей агрегированных данных. Для больших объемов данных предлагается использовать процедуры агрегирования на основе κусочно-полиномиальных моделей. Рассматриваются вопросы повышения точности построения κусочно-полиномиальных моделей в виде полиномиальных сплайнов. Рассмотрены новые подходы в задачах восстановления фунκциональных зависимостей на основе сплайн-агрегаций.

Details

Title
Piecewise Polynomial Models for Aggregation and Regression Analysis in Remote Sensing of the Earth Problems
Author
Popova, Olga A 1 

 Siberian Federal University 79 Svobodny, Krasnoyarsk, 660041, Russia 
First page
964
Publication year
2018
Publication date
2018
Publisher
Siberian Federal University
ISSN
1999494X
e-ISSN
23136057
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2162701972
Copyright
© 2018. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.