It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Compressed sensing (CS)-based sparse channel estimation requires the sensing matrix with the minimum mutual coherence (MC), and its corresponding pilot pattern obtain optimal estimation performance. In order to minimize the MC of the sensing matrix, a deterministic optimized pilot pattern allocation scheme based on modified adaptive genetic algorithm (MAGA) is investigated in this paper. By adjusting the probability of mutation and crossover adaptively, the proposed scheme guides the search process to obtain the optimized pilot pattern. This method guarantees the convergence of the optimization process and prevents the process into local optimization to get the global optimization. Compared with the existing methods, simulation results prove that the proposed scheme obtain the sensing matrix with the smaller MC, whose corresponding deterministic pilot pattern effectively improve channel estimation performance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Engineering Research Centre of Digital Audio and Video Ministry of Education, Communication University of China, Beijing, China; Key Laboratory of High Speed Signal Processing and Internet of Things Technology Application, Jining Normal University, Jining, Inner Mongolia, China
2 Engineering Research Centre of Digital Audio and Video Ministry of Education, Communication University of China, Beijing, China