Full text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Managed Aquifer Recharge (MAR) is a technique used worldwide to increase the availability of water resources. We study how MAR modifies microbial ecosystems and its implications for enhancing biodegradation processes to eventually improve groundwater quality. We compare soil and groundwater samples taken from a MAR facility located in NE Spain during recharge (with the facility operating continuously for several months) and after 4 months of no recharge. The study demonstrates a strong correlation between soil and water microbial prints with respect to sampling location along the mapped infiltration path. In particular, managed recharge practices disrupt groundwater ecosystems by modifying diversity indices and the composition of microbial communities, indicating that infiltration favors the growth of certain populations. Analysis of the genetic profiles showed the presence of nine different bacterial phyla in the facility, revealing high biological diversity at the highest taxonomic range. In fact, the microbial population patterns under recharge conditions agree with the intermediate disturbance hypothesis (IDH). Moreover, DNA sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) band patterns revealed the existence of indicator species linked to MAR, most notablyDehalogenimonas sp., Nitrospira sp. and Vogesella sp.. Our real facility multidisciplinary study (hydrological, geochemical and microbial), involving soil and groundwater samples, indicates that MAR is a naturally based, passive and efficient technique with broad implications for the biodegradation of pollutants dissolved in water.

Details

Title
Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes
Author
Barba, Carme 1   VIAFID ORCID Logo  ; Folch, Albert 1 ; Gaju, Núria 2 ; Sanchez-Vila, Xavier 1   VIAFID ORCID Logo  ; Carrasquilla, Marc 2 ; Grau-Martínez, Alba 3 ; Martínez-Alonso, Maira 2 

 Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), C/Jordi Girona 1–3, 08034 Barcelona, Spain; Associated unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain 
 Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain 
 Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona, Spain 
Pages
139-154
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2166027799
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.