It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ten-year measurements of lightning and relative humidity from 2002 - 2011 have been analyzed in the Nanjing city, China. Statistical analysis shows the lightning density is positively correlated to relative humidity during this period. To further investigate the effect of relative humidity on electrification and lightning discharges in thunderstorms, a two-dimensional cumulus model incorporating dynamics, microphysics, and thunderstorm electrification mechanisms is used to present a sensitive study. The results show that the higher relative humidity in surface leads to more cloud droplet and stronger updraft, because of enhanced latent heat releasing from increasing condensation. Greater updraft and cloud water content primarily contribute to stronger ice crystal and graupel particles production with increasing relative humidity. A greater formation of cloud droplet, graupel and ice crystal result in increasing charge separation via non-inductive and inductive mechanism. The total lightning flashes increase as the relative humidity increase from 60 - 90%, and only tests with high relative humidity of 90% can produce negative cloud to ground (CG) flashes and positive CG flashes. In addition, the increase of relative humidity condition generally leads to a quicker and stronger convection, which results in earlier electrification and lightning discharges in thunderstorm.
Key points
• Statistical analysis shows the lightning density is positively correlated to relative humidity
• The increase of relative humidity generally leads to a quicker and stronger convection
• The stronger relative humidity promotes more cloud to ground lightning flashes generation
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer