Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The 3.6C-20Cr-Fe-(0–2.32)V high chromium cast iron (HCCI) hardfacing layers were deposited on low alloy steel by electroslag surfacing. The microstructure of hardfacing layers were observed and the carbide types, size and area fraction were measured. In addition, the hardness and wear resistance were tested. Results show that the interface between hardfacing layer and low alloy steel is defect free. 3.6C-20Cr-Fe hardfacing layer contains primary carbides and eutectic. Increasing V wt % in the hardfacing layer, primary carbides are decreasing by increasing eutectic along with martensite formation. For 1.50 wt % of V, the microstructure contains a lot of eutectic and a little of martensite. For 2.32 wt % of V, primary austenite formed, the microstructure is primary austenite, eutectic and a little of martensite. In the V alloyed hardfacing layers, V has strong affinity with carbon than chromium, hence V can replace a part of Cr in M7C3 and (Cr4.4–4.7Fe2.1–2.3V0.2–0.5)C3 type carbides are formed. When the V is 2.32 wt %, (Cr0.23V0.77)C carbides are formed in the hardfacing layer. The hardness and wear resistance are improved by increasing V from 0 to 1.50 wt %. However, when the V is 2.32 wt %, the primary austenite has reduced the hardness and wear resistance of hardfacing layer.

Details

Title
Effects of Vanadium on Microstructure and Wear Resistance of High Chromium Cast Iron Hardfacing Layer by Electroslag Surfacing
Author
Wang, Hao; Sheng Fu Yu; Adnan Raza Khan; An Guo Huang
Publication year
2018
Publication date
Jun 2018
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2167858909
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.