It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The dimensions of many water streams, which satisfy proper hydraulic conditions, may not be compatible with the designed dimensions of an irrigation work that needs to be constructed in some locations. The design requirements of such irrigation works may involve a contraction in the channel width in the required location. This contraction, of course, affects different flow properties and the scour hole formed downstream of these structures. Therefore, the present experimental study aims to investigate the effect of the transition angle and the contraction on the flow properties and on the scour phenomenon downstream water structures. Through 460 experimental runs, carried out on 20 experimental models, the study proved that, for an efficient hydraulic performance and economic design, the best transition angle (θ) for the approaches of water structures is 30° with a relative contracted width ratio (r = b/B) not less than 0.6.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer