Abstract

Background

The deployment of Genome-wide association studies (GWASs) requires genomic information of a large population to produce reliable results. This raises significant privacy concerns, making people hesitate to contribute their genetic information to such studies.

Results

We propose two provably secure solutions to address this challenge: (1) a somewhat homomorphic encryption (HE) approach, and (2) a secure multiparty computation (MPC) approach. Unlike previous work, our approach does not rely on adding noise to the input data, nor does it reveal any information about the patients. Our protocols aim to prevent data breaches by calculating the χ2 statistic in a privacy-preserving manner, without revealing any information other than whether the statistic is significant or not. Specifically, our protocols compute the χ2 statistic, but only return a yes/no answer, indicating significance. By not revealing the statistic value itself but only the significance, our approach thwarts attacks exploiting statistic values. We significantly increased the efficiency of our HE protocols by introducing a new masking technique to perform the secure comparison that is necessary for determining significance.

Conclusions

We show that full-scale privacy-preserving GWAS is practical, as long as the statistics can be computed by low degree polynomials. Our implementations demonstrated that both approaches are efficient. The secure multiparty computation technique completes its execution in approximately 2 ms for data contributed by one million subjects.

Details

Title
Towards practical privacy-preserving genome-wide association study
Author
Bonte, Charlotte; Makri, Eleftheria; Amin Ardeshirdavani; Simm, Jaak; Moreau, Yves; Vercauteren, Frederik
Publication year
2018
Publication date
2018
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2168454865
Copyright
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.