It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Accurate gene regulatory networks can be used to explain the emergence of different phenotypes, disease mechanisms, and other biological functions. Many methods have been proposed to infer networks from gene expression data but have been hampered by problems such as low sample size, inaccurate constraints, and incomplete characterizations of regulatory dynamics. Since expression regulation is dynamic, time-course data can be used to infer causality, but these datasets tend to be short or sparsely sampled. In addition, temporal methods typically assume that the expression of a gene at a time point depends on the expression of other genes at only the immediately preceding time point, while other methods include additional time points without any constraints to account for their temporal distance. These limitations can contribute to inaccurate networks with many missing and anomalous links.
Results
We adapted the time-lagged Ordered Lasso, a regularized regression method with temporal monotonicity constraints, for de novo reconstruction. We also developed a semi-supervised method that embeds prior network information into the Ordered Lasso to discover novel regulatory dependencies in existing pathways. R code is available at https://github.com/pn51/laggedOrderedLassoNetwork.
Conclusions
We evaluated these approaches on simulated data for a repressilator, time-course data from past DREAM challenges, and a HeLa cell cycle dataset to show that they can produce accurate networks subject to the dynamics and assumptions of the time-lagged Ordered Lasso regression.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer