Full text

Turn on search term navigation

© 2019 Rod et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Relative permeability is an important attribute influencing subsurface multiphase flow. Characterization of relative permeability is necessary to support activities such as carbon sequestration, geothermal energy production, and oil and gas exploration. Previous research efforts have largely neglected the relative permeability of wellbore cement used to seal well bores where risks of leak are significant. Therefore this study was performed to evaluate fracturing on permeability and relative permeability of wellbore cement. Studies of relative permeability of water and air were conducted using ordinary Portland cement paste cylinders having fracture networks that exhibited a range of permeability values. The measured relative permeability was compared with three models, 1) Corey-curve, often used for modeling relative permeability in porous media, 2) X-curve, commonly used to represent relative permeability of fractures, and 3) Burdine model based on fitting the Brooks-Corey function to fracture saturation-pressure data inferred from x-ray computed tomography (XCT) derived aperture distribution results. Experimentally-determined aqueous relative permeability was best described by the Burdine model. Though water phase tended to follow the Corey-curve for the simple fracture system while air relative permeability was best described by the X-curve.

Details

Title
Relative permeability for water and gas through fractures in cement
Author
Rod, Kenton A; ⨯ Wooyong Um; Colby, Sean M; Rockhold, Mark L; Strickland, Christopher E; Han, Sangsoo; Kuprat, Andrew P
First page
e0210741
Section
Research Article
Publication year
2019
Publication date
Jan 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2170386417
Copyright
© 2019 Rod et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.