It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.e. thresholded action potential counts) and multi-frequency band local field potentials recorded via 4 X 4 mm2 microelectrode arrays. Microelectrode arrays were implanted in 5 patients undergoing neuromonitoring for resective surgery. Post-implant analysis revealed arrays were outside the seizure onset areas. Preictal periods were defined as the 1-hour period leading to a seizure. A 5-minute gap between the preictal period and the putative seizure onset was enforced to account for potential errors in the determination of actual seizure onset times. We used extreme gradient boosting and long short-term memory networks for prediction. Prediction accuracy based on the area under the receiver operating characteristic curves reached 90% for at least one feature type in each patient. Importantly, successful prediction could be achieved based exclusively on multiunit activity. This result indicates that preictal activity in the recorded neocortical patches involved not only subthreshold postsynaptic potentials, perhaps driven by the distal seizure onset areas, but also neuronal spiking in distal recurrent neocortical networks. Beyond the commonly identified seizure onset areas, our findings point to the engagement of large-scale neuronal networks in the neural dynamics building up toward a seizure. Our initial results obtained on currently available human intracortical recordings warrant new studies on larger datasets, and open new perspectives for seizure prediction and control by emphasizing the contribution of multiscale neural signals in large-scale neuronal networks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer